首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73855篇
  免费   6352篇
  国内免费   5520篇
电工技术   6266篇
技术理论   8篇
综合类   7430篇
化学工业   9148篇
金属工艺   13357篇
机械仪表   3812篇
建筑科学   5861篇
矿业工程   2052篇
能源动力   2098篇
轻工业   949篇
水利工程   1413篇
石油天然气   4278篇
武器工业   857篇
无线电   4918篇
一般工业技术   8850篇
冶金工业   4084篇
原子能技术   749篇
自动化技术   9597篇
  2024年   125篇
  2023年   1131篇
  2022年   1676篇
  2021年   2239篇
  2020年   2398篇
  2019年   2087篇
  2018年   1902篇
  2017年   2551篇
  2016年   2485篇
  2015年   2621篇
  2014年   4439篇
  2013年   4797篇
  2012年   5011篇
  2011年   5690篇
  2010年   4349篇
  2009年   4641篇
  2008年   4130篇
  2007年   4841篇
  2006年   4562篇
  2005年   3763篇
  2004年   3325篇
  2003年   2842篇
  2002年   2405篇
  2001年   1976篇
  2000年   1616篇
  1999年   1354篇
  1998年   994篇
  1997年   882篇
  1996年   736篇
  1995年   723篇
  1994年   583篇
  1993年   450篇
  1992年   404篇
  1991年   267篇
  1990年   277篇
  1989年   265篇
  1988年   174篇
  1987年   102篇
  1986年   122篇
  1985年   90篇
  1984年   91篇
  1983年   59篇
  1982年   75篇
  1981年   53篇
  1980年   51篇
  1979年   39篇
  1978年   41篇
  1977年   27篇
  1964年   27篇
  1955年   36篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
1.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
2.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
3.
为了减轻因流动加速腐蚀(FAC)引起的锅炉结垢加速、汽水系统管道厚度减小甚至爆裂现象,对超临界机组发生流动加速腐蚀的机理及其主要影响因素进行了研究,并讨论了管壁内表面粗糙度、蒸汽含汽率、pH值、溶氧量对FAC的影响,以及温度与pH值、温度与流速、pH值与溶解氧量、溶解氧量与氢电导率等影响因素之间的相互作用关系,最后结合实际电厂的运行数据验证了分析结果。研究表明:减小工质流速、管壁粗糙度和氢电导率,增大给水的pH值和溶解氧含量可以使FAC的腐蚀速率减小,超临界加氧处理时pH值应在8.9~9.2之间,溶解氧量范围为45~100μg/L,氢电导率的期望值在0.1μS/cm以下。由于各影响因素之间的作用十分复杂,本文只给出了大致范围和趋势,并未给出准确数据。  相似文献   
4.
Classical Fourier's theory is well-known in continuum physics and thermal sciences. However, the primary drawback of this law is that it contradicts the principle of causality. To explore the thermal relaxation time characteristic, Cattaneo–Christov's theory is adopted thermally. In this regard, the features of magnetohydrodynamic (MHD) mixed convective flows of Casson fluids over an impermeable irregular sheet are revealed numerically. In addition, the resulting system of partial differential equations is altered via practical transformations into nonlinear ordinary differential equations. An advanced numerical algorithm is developed in this respect to get higher approximations for temperature and velocity fields, as well as their corresponding wall gradients. For validating our numerical code, the current outcomes are compared with the available literature results. Moreover, it is revealed that the velocity field is more prominent in the suction flow situation as compared with the injection flow case. It is also found that the Casson fluid is hastened in the case of lower yield stress. Larger values of thermal relaxation parameters create a lessening trend in the temperature distribution and its related boundary layer breadth.  相似文献   
5.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
6.
Rapid advances in the field of catalysis require a microscopic understanding of the catalytic mechanisms. However, in recent times, experimental insights in this field have fallen short of expectations. Furthermore, experimental searches of novel catalytic materials are expensive and time-consuming, with no guarantees of success. As a result, density functional theory (DFT) can be quite advantageous in advancing this field because of the microscopic insights it provides and thus can guide experimental searches of novel catalysts. Several recent works have demonstrated that low-dimensional materials can be very efficient catalysts. Graphene quantum dots (GQDs) have gained much attention in past years due to their unique properties like low toxicity, chemical inertness, biocompatibility, crystallinity, etc. These properties of GQDs which are due to quantum confinement and edge effects facilitate their applications in various fields like sensing, photoelectronics, catalysis, and many more. Furthermore, the properties of GQDs can be enhanced by doping and functionalization. In order to understand the effects of functionalization by oxygen and boron based groups on the catalytic properties relevant to the hydrogen-evolution reaction (HER), we perform a systematic study of GQDs functionalized with the oxygen (O), borinic acid (BC2O), and boronic acid (BCO2). All calculations that included geometry optimization, electronic and adsorption mechanism, were carried out using the Gaussian16 package, employing the hybrid functional B3LYP, and the basis set 6-31G(d,p). With the variation in functionalization groups in GQDs, we observe significant changes in their electronic properties. The adsorption energy Eads of hydrogen over O-GQD, BC2O-GQD, and BCO2-GQD is ?0.059 eV, ?0.031 eV and ?0.032 eV respectively. Accordingly, Gibbs free energy (ΔG) of hydrogen adsorption is extraordinarily near the ideal value (0 eV) for all the three types of functionalized GQDs. Thus, the present work suggests pathways for experimental realization of low-cost and multifunctional GQDs based catalysts for clean and renewable hydrogen energy production.  相似文献   
7.
《Ceramics International》2022,48(10):14349-14359
The influence of heat-treatment temperatures (700 °C, 900°C, 1200 °C) on the phase, physical properties, crystallization rate, and in vitro properties of the solution combustion synthesized silicon-doped calcium phosphates (CaPs) were investigated. The thermodynamic aspects (enthalpy, entropy, and free energy) of the synthesis process and the crystallographic properties of the final samples were first predicted and then confirmed using density functional theory (DFT). Results demonstrated that the crystallization rate was controlled by the fuel(s) type (glycine, citric acid, and urea) and the amounts of Si4+ ions (0, 0.1, 0.4 mol). The highest calculated crystallization rate values of the un-doped, 0.1, and 0.4 mol Si-doped samples were 64%, 22%, 38%, respectively. The obtained results from the DFT simulation revealed that crystal growth in the direction of c-axis of hydroxyapatite (HAp) structure could change the stability of (001) surface of (HAp). Also, the computational data confirmed the adsorption of Si–OH groups on the (001) surface of HAp during the SCS process with an adsorption energy of 1.53 eV. AFM results in line with DFT simulation showed that the observed change in the surface roughness of Si-doped CaPs from 2 to 8 nm could be related to the doping of Si4+ ions onto the surface of CaPs. Besides, the theoretical and experimental investigation showed that crystal growth and doping of Si4+ ions could decrease the activation energy of oxygen reduction reaction (ORR). Furthermore, the results showed that the crystallized HAp structure could have great potential to efficiently reduce oxidative stress in human body.  相似文献   
8.
Catalyst slurries (inks) were prepared with and without thermal treatment to determine the support/ionomer structures and interactions in the catalyst layer (CL) which impact on membrane electrode performance and durability. The thermal treatment of the ink has a nominal effect on the ionomer/support structure in which the carbon support is non-graphitised. The agglomerate/aggregate structures have a high degree of support/ionomer interface and sufficient macroporosity for water movement in the CL. This improves the membrane electrode assembly (MEA) performance, but also accelerates electrochemical carbon degradation. Thermal treatment of graphitised support-containing inks resulted in increased performance facilitated by a larger support/ionomer interface. Without thermal treatment, the more hydrophobic support would form aggregate structures in which water contact was restricted, limiting proton transfer, isolating catalyst, decreasing performance. The water limited access, would however, prolong stability during accelerates carbon degradation. The electrochemical properties were studied using full and half MEA cells.  相似文献   
9.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
10.
用块状渣土置换软弱地基和回填低洼谷地等是处置工程渣土的有效途径。为了分析饱和块状混合回填土地基的固结性状,运用混合物理论建立了其一维固结模型。首先,假定块状土固相和充填土固相之间满足等应变条件,获得了饱和块状混合回填土中各相应变与块状土孔隙变形和充填土孔隙变形的关系式。其次,在小应变条件下,根据自由能势函数方程建立了饱和块状混合回填土的一维线弹性本构方程,再结合达西定律和应力平衡方程获得了一维固结控制方程。再次,利用分离变量法得到一维固结解析解,通过退化本文模型与已有模型进行对比,验证了本文模型的正确性。最后,基于所得解析解,分析了充填土孔隙渗透系数、块状土孔隙渗透系数以及流体交换参数等因素对饱和块状混合回填土地基固结性状的影响。分析结果表明:充填土孔隙渗透系数对饱和块状混合回填土地基整体固结性状起主导作用;在固结初期,块状土超孔压会有一定程度的上升,且3个参数具有相似的作用机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号