首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  能源动力   6篇
  2017年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
汽轮机末级转子叶片流固耦合计算   总被引:1,自引:0,他引:1  
弓三伟  任丽芸  刘火星  李琳  邹正平 《热力透平》2007,36(3):153-157,163
对于大展弦比的叶片,流场与结构的相互作用不可忽略。本文利用商业软件CFX和ANSYS对某汽轮机末级转子叶片进行了设计和非设计状态下的流固耦合计算,对两种状态下耦合前后的流场结果进行了对比分析,叶片结构计算采用了双向与单向两种耦合方式。结果表明,非设计状态下流场对结构变形具有更强的敏感性;在稳态载荷作用下,两种耦合方式下的叶片位移、应力值差别不大。  相似文献
2.
采用变换坐标系法推导坝库系统流固耦合矩阵   总被引:1,自引:1,他引:0  
利用变换坐标系法推导坝库系统流固耦合矩阵,采用附加质量法分析了坝水相互作用.对地震作用下水体对坝体的影响进行了研究.结果表明,水体在地震初期对坝体的运动有一定阻尼作用,对提高坝体的抗震性能有益,但延长了坝体振动时间,并对坝体后期运动有一定作用.  相似文献
3.
This paper describes the design of a new kind of miniature abrading sphere, which is magnetically mounted inside a spherical gap and set in rotation pneumatically with air. Large eddy simulation is performed in conjunction with the compressible Smagorinsky model. Minimal temperature variation allows for the assumption of adiabatic walls. Fluid-solid interaction is modeled using the law of the wall for compressible turbulent flow. A parametric study is done to determine optimal geometric layout while taking physical restrictions into account. The resulting optimal configuration is then examined in detail in order to determine demands to be met by the computerized control of the magnetic bearing as well as to quantify the force available to the abrasion process. Finally, a mathematical relation is given that determines available abrasion force depending on standard volumetric flow rate and rotation frequency. The findings presented here provide a basis for further development of smaller versions of the tool.  相似文献
4.
This work is focused on the analysis of the response of the tracheal wall to different ventilation conditions. Thus, a finite element model of a human trachea is developed and used to analyze its deformability under normal breathing and mechanical ventilation. The geometry of the trachea is obtained from computed tomography (CT) images of a healthy man. A fluid structure interaction approach is used to analyze the deformation of the wall when the fluid (in this case, air) moves inside the trachea. A structured hexahedral-based grid for the tracheal walls and an unstructured tetrahedral-based mesh with coincident nodes for the fluid are used to perform the simulations with the finite element-based commercial software code (ADINA R & D Inc.). The tracheal wall is modeled as a fiber reinforced hyperelastic solid material in which the anisotropy due to the orientation of the fibers is introduced. Deformation of the tracheal walls is analyzed under different conditions. Normal breathing is performed assuming a sinus shape of the pressure at the inlet and air speed at the outlet based on real data which represent the inspiration and the expiration processes respectively. Mechanical ventilation is simulated as smooth square shape velocity airflow considering positive values of pressure using data from a mechanical ventilation machine. Deformations of the tracheal cartilage rings and of the muscle membrane, as well as the maximum principal stresses in the wall, are analyzed. The results show that, although the deformation and stresses are quite small for both conditions, forced ventilation does not exactly imitate the physiological response of the trachea, since with always positive pressure values the trachea does not collapse during mechanical breathing.  相似文献
5.
Endotracheal stenting is a common treatment for tracheal disorders as stenosis, cronic cough or dispnoea episodes. However, medical treatment and surgery are still challenging due to the difficulties in overcoming potential prosthesis complications. In this work we analyze the response of the tracheal wall during breathing and coughing conditions under different stent implantations. A finite element model of a human trachea was developed and used to analyze tracheal deformability after prosthesis implantation under normal breathing and coughing using a fluid-structure interaction approach (FSI). The geometry of the trachea is obtained from computed tomography (CT) images of a healthy patient. A structured hexahedral-based grid for the tracheal wall and an unstructured tetrahedral-based mesh with coincident nodes for the fluid were used to perform the simulations with a finite element-based commercial software code. Tracheal wall is modeled as a fiber reinforced hyperelastic solid material in which the anisotropy due to the orientation of the fibers is taken into account. Deformations of the tracheal cartilage rings and of the muscle membrane, as well as the maximum principal stresses in the wall, are analyzed and compared with those of the healthy trachea in absence of prosthesis. The results showed that, the presence of the stent prevents tracheal muscle deflections especially during coughing. In addition, we proposed a methodology to evaluate, through numerical simulations, the predisposition of the stent to migrate.  相似文献
6.
为了研究多级导叶式离心泵转子运行特性,以五级导叶式离心泵为研究对象,采用ANSYS模块下的Woekbench对该五级导叶式离心泵进行无预应力和有预应力下的模态计算。结果表明,旋转离心力对固有频率的影响大于流固耦合力;在同时考虑流固耦合力和旋转离心力的条件下,该五级离心泵的固有频率介于只考虑旋转离心力和只考虑流固耦合力之间,且各阶临界转速更接近只考虑旋转离心力时的临界转速;旋转离心力对各阶振幅的影响较小,而流固耦合力对各阶振幅的影响较大;额定转速小于1阶临界转速的0.8倍,该五级导叶式离心泵转子系统是一个稳定的刚性系统。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号