首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11356篇
  免费   675篇
  国内免费   466篇
电工技术   2575篇
综合类   816篇
化学工业   1184篇
金属工艺   313篇
机械仪表   456篇
建筑科学   3034篇
矿业工程   238篇
能源动力   345篇
轻工业   432篇
水利工程   180篇
石油天然气   237篇
武器工业   69篇
无线电   863篇
一般工业技术   873篇
冶金工业   324篇
原子能技术   59篇
自动化技术   499篇
  2024年   24篇
  2023年   127篇
  2022年   211篇
  2021年   251篇
  2020年   270篇
  2019年   176篇
  2018年   151篇
  2017年   243篇
  2016年   287篇
  2015年   388篇
  2014年   769篇
  2013年   595篇
  2012年   904篇
  2011年   980篇
  2010年   764篇
  2009年   731篇
  2008年   683篇
  2007年   851篇
  2006年   745篇
  2005年   602篇
  2004年   501篇
  2003年   456篇
  2002年   362篇
  2001年   320篇
  2000年   193篇
  1999年   201篇
  1998年   132篇
  1997年   104篇
  1996年   89篇
  1995年   76篇
  1994年   78篇
  1993年   47篇
  1992年   41篇
  1991年   32篇
  1990年   14篇
  1989年   22篇
  1988年   20篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   8篇
  1980年   2篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1959年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
《Ceramics International》2022,48(22):32994-33002
Al2O3 aerogels are widely employed in heat insulation and flame retardancy because of their unique combination of low thermal conductivity and exceptional high-temperature stability. However, the mechanical properties of Al2O3 aerogel are poor, and the preparation time is considerably long. In this study, we present a simple and scalable approach to construct monolithic Pal/Al2O3 composite aerogels using solvothermal treatment instead of traditional solvent replacement, which remarkably shortened the preparation time. Subsequently, to obtain stable superhydrophobicity (θ > 152°), the Pal/Al2O3 aerogel was modified by gas-phase modification method. The obtained Pal/Al2O3 composite aerogels demonstrate the integrated properties of low density (0.078–0.106 g/cm3), low thermal conductivity (1000 °C, 0.143 W/(m·K)), good mechanical properties (Young's modulus, 1.6 MPa), and good heat resistance. The monolithic Pal/Al2O3 composite aerogels with improved mechanical performance and improved thermal stability can show great potential in the field of thermal insulation.  相似文献   
2.
电力保护装置在出厂前要进行严格的板卡测试,传统板卡测试系统自动化程度较低,功能不够强大,且开发成本高,通用性不好。针对以上不足,设计了一种基于虚拟仪器的板卡测试系统,该系统主要由测试程序和上位机两部分组成,测试程序主要完成对板卡设备的模块化测试,并给出测试结果;上位机通过以太网与测试板卡通信,借助FTP和telnet技术,完成整个测试程序的发送、执行、测试结果的获取等功能。以电力保护装置内的CPU板卡为研究对象,结果表明,该测试系统可对板卡进行高效率自动测试,测试结果可靠,故障信息可追踪,可有效提高电力保护装置调试的通过率,保证企业产品的可靠性。  相似文献   
3.
Ceramics are considered intrinsically brittle at room temperature, which is mainly attributed to the limited availability of crystallographic slips and pre-existing geometrical flaws. Moreover, the lack of flexibility has severely hindered many high-end applications of ceramic materials. Here, we produce ceramic sponges that are simultaneously ultra-light, elasto-flexible, thermally insulating, and can fully recover from large deformation with a near-zero Poisson's ratio. These spongy materials also possess superb fatigue resistance without the accumulation of damage or structural collapse for 10,000 large-scale compressive or buckling cycles. We demonstrate the exceptional flexibility is enabled by the elastic distortion of nanograin–glassy dual phase and the fiber bulking in open-cell three-dimensional structure. Moreover, these spongy materials possess superior temperature-invariant superelasticity from deep cryogenic temperatures (−196 °C) to high temperature (1500 °C). Our study not only developed mechanically reliable lightweight ceramics for numerous extreme applications, but also provided new theoretical insights into the origin of flexibility in polycrystalline ceramics.  相似文献   
4.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
5.
《Ceramics International》2021,47(24):34361-34379
This paper aimed to design and optimize the structure of a thick thermal barrier coating by adding graded layers to achieve a balance between high thermal insulation capacity and durability. To this end, conventional TBC, conventional TTBC, and functionally graded TTBCs were deposited on the superalloy substrate by air plasma spraying. To determine the quality of the bond strength of the coatings, the bonding strength was measured. The durability of coatings was evaluated by isothermal oxidation and thermal shock tests. Then, at a temperature of 1000 °C, the thermal insulation capacity of the coatings was carried out. The microstructure of the coatings was characterized by a scanning electron microscope. The results showed that the thickness of the TGO layer formed on the bond coat in the conventional TBC and TTBC under the oxidation test at 1000 °C after 150 h was 2.79 and 2.11 μm, respectively, whereas, in the functionally graded TTBC samples, no continuous TGO layer was observed as a result of internal oxidation. The functionally graded TTBC presented higher durability than conventional TTBC due to improved bonding strength, thermal shock resistance, and the lack of a TGO layer at the bond/top coat interface. Also, the thermal insulation capacity of the functionally graded TTBC (with 1000 μm thickness of YSZ coating) was better than TTBC.  相似文献   
6.
王东 《水泥工程》2021,34(4):42-44
根据水泥烧成热耗的组成,降低高温设备表面散热是降低水泥烧成热耗的重要途径之一,而减少高温窑炉墙壁的热传导可有效降低设备的表面散热。本文在介绍无机内保温涂层隔热原理的基础上,对保温涂层的应用效果进行了对比研究,通过在传统耐火隔热材料的基础上增加新型无机内保温涂层,可有效降低高温设备外表面温度,减少水泥生产中的散热损失,达到节能降耗的目的。  相似文献   
7.
通过选取无水乙醇为溶剂,以SiO2气凝胶为溶质,制备SiO2气凝胶改性溶液,并将其应用于改善玻璃棉的保温性能。通过浸润及常压干燥的方法制取玻璃棉/SiO2气凝胶复合板,研究SiO2气凝胶的质量分数和浸润时间对其性能的影响,并与溶胶-凝胶法制备的玻璃棉/SiO2气凝胶复合板相比。研究表明SiO2气凝胶的质量分数和浸润时间对玻璃棉/SiO2气凝胶复合板的性能有显著影响。当SiO2气凝胶质量分数达到8%且浸润时间为20 min时,玻璃棉/SiO2气凝胶复合板的短期吸水率、热导率分别下降了38.09%、18.32%,抗压强度上升了102.89%。与溶胶-凝胶法相比,本方法具有制备周期短、工艺较为简洁、成本低等优点,更适宜于大规模生产应用。  相似文献   
8.
《Ceramics International》2022,48(14):20220-20227
A specially designed experimental device was used in laboratory to investigate the corrosion of mullite during the calcination of Li(NixCoyMnz)O2 (LNCM) materials. The anti-corrosion tests were carried out at 1000, 1100, 1200 and 1300 °C, and characterized with X-ray diffraction and scanning electron microscopy. The influence of temperature on the interactions between mullite insulation materials and LNCM materials was determined. In addition, the high-temperature creep properties of the mullite insulation materials before and after corrosion were tested. The laboratory scale tests, thermodynamic and kinetic calculations allowed a more comprehensive understanding of the evolution of the mullite insulation materials during serving for the roasting process of LNCM materials. Through this research, it is suggested that the upgrading of the kiln lining in the lithium battery industry should select materials with excellent resistance to alkali corrosion, especially excellent resistance to Li+ corrosion.  相似文献   
9.
In vibratory protection and insulation systems, the major problem consist to choose suitable passive elements (spring, damper, others), which are inserted between the resonator and the exciter which have the role of preventing or reducing the transmission of dynamic forces. This work consists of characterizing a synthetic rubber (SR) sample of hollow circular shape (design requirement) by determining the coefficient of energy dissipation at an average ambient temperature of 20°C with a humidity of 25%. The mechanical load and discharge tests make it possible to draw hysteresis curves through which the dissipation coefficient will be determined, the load values is between 500 and 1000 N, with 30, 60, and 90 mm/min loading speeds and a number of cycles 2, 3, and 5, these values have been chosen so as not to cause the effect of cyclic hardening and softening and also to take into consideration, that the vibration limits movement at 3 cycles, which makes this test different from other tests such as fatigue. The processing of different curves, allows to determine energy dissipation coefficient of rubber specimen and also to examine its variation as a function of load, loading speed, and number of cycles; it is possible to determine other characteristics from this coefficient, such as, damping ratio, dynamic amplification factor, and so on, necessary to study efficiency of protection systems, design, and manufacture, based on the curve of transmissibility of dynamic forces to evaluate performance rubber conditions use.  相似文献   
10.
针对隔夹层发育的海上L油田剩余油挖潜难点,通过提取典型井组地质参数,分别设计注入井单独钻遇隔夹层和生产井单独钻遇隔夹层2种情况下的6种注采井间隔夹层分布模型,对每种隔夹层分布模型均开展水驱和早期注聚实验,一共完成12个二维平板可视化模型实验。实验结果表明,在基础井网下,对于注水井钻遇隔夹层和生产井钻遇隔夹层,其隔夹层相对长度为井距2/3的布井模型的采收率指标均最高。注聚井组筛选应优先考虑2种情况:第一种为注水井钻遇隔夹层且隔夹层相对长度为井距1/3的模型,注聚采收率增幅可达18.2%;第二种为生产井钻遇隔夹层且隔夹层相对长度为井距2/3的模型,注聚采收率增幅可达19.0%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号