首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   2篇
能源动力   1篇
  2010年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species and was related to the amount of latex produced. The outcome also may be related to the amount of cardenolide produced by the plants as a potential chemical defense against herbivory. Growth was more rapid, but survival was similar on partially severed compared with intact leaves of the high-latex/low-cardenolide milkweed, Asclepias syriaca, whereas both growth and survival were unaffected on the low-latex/low-cardenolide milkweed A. incarnata. On the low-latex/low-cardenolide milkweed A. tuberosa, both growth and survival of larvae were only marginally affected. These results contrast sharply to previous results with the milkweed, A. humistrata, in Florida, which has both high latex and high cardenolide. Larval growth and survival on A. humistrata were both increased by partially severing leaf petioles. Larval growth rates among all four milkweed species on leaves with partially severed petioles were identical, suggesting that latex and possibly the included cardenolides are important in first-instar monarch larval growth, development, and survivorship.  相似文献   
2.
能源橡胶草的综合利用研究   总被引:1,自引:0,他引:1  
橡胶草是世界主要产胶植物之一,其胶的品质与巴西橡胶树类似。着重论述了橡胶草综合利用目的及意义,指出从橡胶草获得战略橡胶的同时,可以得到清洁能源乙醇和保健品菊糖。橡胶草不仅可以作为产胶模式植物,进行胶乳相关基因的研究,而且其橡胶乳管可作为植物生物反应器生产稀缺药用蛋白。指出了如何利用循环经济与低碳经济的发展理念开发植物资源,进行综合利用研究。  相似文献   
3.
Larvae of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae), often transect leaves with a narrow trench before eating the distal section. The trench reduces larval exposure to exudates, such as latex, during feeding. Plant species that do not emit exudate, such as Plantago lanceolata, are not trenched. However, if exudate is applied to a looper's mouth during feeding on P. lanceolata, the larva will often stop and cut a trench. Dissolved chemicals can be similarly applied and tested for effectiveness at triggering trenching. With this assay, I have documented that lactucin from lettuce latex (Lactuca sativa), myristicin from parsley oil (Petroselinum crispum), and lobeline from cardinal flower (Lobelia cardinalis) elicit trenching. These compounds are the first trenching stimulants reported. Several other constituents of lettuce and parsley, including some phenylpropanoids, monoterpenes, and furanocoumarins had little or no activity. Cucurbitacin E glycoside found in cucurbits, another plant family trenched by cabbage loopers, also was inactive. Lactucin, myristicin, and lobeline all affect the nervous system of mammals, with lobeline acting specifically as an antagonist of nicotinic acetylcholine receptors. To determine if cabbage loopers respond selectively to compounds active at acetylcholine synapses, I tested several neurotransmitters, insecticides, and drugs with known neurological activity, many of which triggered trenching. Active compounds included dopamine, serotonin, the insecticide imidacloprid, and various drugs such as ipratropium, apomorphine, buspirone, and metoclopramide. These results document that noxious plant chemicals trigger trenching, that loopers respond to different trenching stimulants in different plants, that diverse neuroactive chemicals elicit the behavior, and that feeding deterrents are not all trenching stimulants. The trenching assay offers a novel approach for identifying defensive plant compounds with potential uses in agriculture or medicine. Cabbage loopers in the lab and field routinely trench and feed on plants in the Asteraceae and Apiaceae. However, first and third instar larvae enclosed on Lobelia cardinalis (Campanulaceae) failed to develop, even though the third instar larvae attempted to trench. Trenching ability does not guarantee effective feeding on plants with canal-borne exudates. Cabbage loopers must not only recognize and respond to trenching stimulants, they must also tolerate exudates during the trenching procedure to disable canalicular defenses.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号