首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54843篇
  免费   5993篇
  国内免费   2668篇
电工技术   2589篇
技术理论   9篇
综合类   3996篇
化学工业   17242篇
金属工艺   3118篇
机械仪表   1628篇
建筑科学   3344篇
矿业工程   1344篇
能源动力   4087篇
轻工业   2548篇
水利工程   624篇
石油天然气   2583篇
武器工业   268篇
无线电   2924篇
一般工业技术   9121篇
冶金工业   3247篇
原子能技术   708篇
自动化技术   4124篇
  2024年   115篇
  2023年   1189篇
  2022年   1679篇
  2021年   1856篇
  2020年   1975篇
  2019年   1780篇
  2018年   1501篇
  2017年   1772篇
  2016年   1785篇
  2015年   1729篇
  2014年   2905篇
  2013年   3161篇
  2012年   4001篇
  2011年   4283篇
  2010年   3233篇
  2009年   3367篇
  2008年   2876篇
  2007年   3626篇
  2006年   3429篇
  2005年   2935篇
  2004年   2572篇
  2003年   2294篇
  2002年   1821篇
  2001年   1395篇
  2000年   1184篇
  1999年   900篇
  1998年   784篇
  1997年   567篇
  1996年   499篇
  1995年   440篇
  1994年   379篇
  1993年   268篇
  1992年   232篇
  1991年   184篇
  1990年   152篇
  1989年   91篇
  1988年   80篇
  1987年   77篇
  1986年   55篇
  1985年   83篇
  1984年   74篇
  1983年   62篇
  1982年   31篇
  1981年   6篇
  1980年   20篇
  1979年   5篇
  1977年   5篇
  1976年   4篇
  1959年   5篇
  1951年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
2.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
3.
甫沙4井位于塔里木盆地塔西南坳陷昆仑山前冲断带的柯东构造带上,北部和东部分别发育有柯克亚和柯东1井油气田。为研究甫沙4井原油来源与充注过程,对原油样品和连续抽提后的含油砂样各组分(游离态、束缚态、包裹体)进行GC、GC?MS和 GC?IRMS分析,与柯克亚凝析油气田油样进行油—油对比。结果表明:甫沙4井晚期充注原油组分具有C29?32重排藿烷、重排甾烷和Ts相对含量高,C27?29甾烷ααα 20R分布呈反“L”型,以及正构烷烃单体碳同位素值较低等特征,与柯克亚凝析油气田来源于二叠系普司格组(P2?3p)烃源岩的主体原油(I类)地球化学特征一致。而早期充注的原油组分具有重排藿烷、重排甾烷和Ts相对含量较低,C27?29甾烷ααα 20R分布呈“V”型,以及正构烷烃单体碳同位素值较高等特征,与柯克亚凝析油气田来源于中—下侏罗统湖相泥岩的II类原油地球化学特征一致。甫沙4井经历3个阶段成藏过程:①在上新世,二叠系烃源岩于生油晚期阶段生成的I类原油运移至柯克亚构造带或柯东构造带深部形成油藏;②在更新世早期,侏罗系烃源岩于生油早—中期生成的II类原油运移至甫沙4井白垩系储层;③在第四纪,强烈的构造作用使深部I类原油沿断裂调整进入甫沙4井白垩系储层。最终造成甫沙4井白垩系储层II类原油先充注,I类原油后充注的特殊现象。  相似文献   
4.
《Ceramics International》2022,48(15):21961-21971
The Simplistic formation, advantageous configuration, non-colossal magnetoresistance and broadband absorption are important parameters for microwave absorbent materials. In this study, a core-shell nanocomposite comprising of Sn-filled carbon nanotubes (Sn/CNTs) was prepared by arc discharge method. The microstructure, morphology and surface composition of Sn/CNTs-based core-shell nanocomposites were characterized in detail. Sn/CNTs nanocomposite showed a magnetic signal due to the broken bonds and defects at interfaces in Sn/CNTs. The weak ferromagnetism was found to be helpful in improving magnetic permeability in the Sn/CNTs which confirms its role as a magnetic loss material under incident electromagnetic wave. Sn-filled CNTs revealed an appropriate value of dielectric constant, which plays an important role in impedance matching upon incident electromagnetic wave. The composite of Sn-CNTs and paraffin with a 50 wt % loading showed the lowest reflection loss (RL) of ?43.87 dB at 10 GHz, with a wide effective absorption band (RL ≤ ?10 dB) of 3 GHz in thickness of 2.3 mm. This enhanced performance is attributed to the combined effect of the conduction loss in one-dimensional core-shell architecture, the interfacial loss Sn-CNT interface, the magnetic loss due to defects-induced ferromagnetism in Sn shell, and in the carbon-containing atomic layers of CNTs.  相似文献   
5.
In this research, a technical, economic and environmental analysis has been proposed to a Hybrid Solid Oxide Fuel Cell (SOFC) system-based hybrid system including biomass, gas turbine, and Proton Exchange Membrane Electrolyzer. A multi-objective optimization technique has been utilized to improve the overall product cost and the exergy effectiveness based on a developed version of Aquila Optimizer (DAO). The main idea of using the developed version is to improve the accuracy and the precision of the original Aquila optimizer. The system is then authenticated in terms of energy/exergy effectiveness, and energy-economic efficiency. The achievements indicate that employing the optimization algorithm for different configurations provided satisfying results for the system.  相似文献   
6.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
7.
The carbon vacancy in high-entropy carbides (HECs) has a significant impact on their physical and chemical properties, yet relevant studies have still been relatively few. In this study, we investigate the surface energies of HECs with variable carbon vacancies through first-principles calculations. The results show that the surface energy of the (1 0 0) surface of the stoichiometric HECs is significantly lower than that of (1 1 1) surface. With the decrease in carbon stoichiometry, the surface energies of both (1 0 0) and (1 1 1) surfaces increase gradually, which is mainly due to the weakening of covalent bonding and the decrease of metal Hirshfeld-I (HI) charges. However, the surface energy of (1 0 0) surface increases more quickly than that of (1 1 1) surface and will exceed that of (1 1 1) surface when the carbon stoichiometry decreases to a certain extent, which is primarily attributed to the greater decrease rate of metal HI charges of (1 0 0) surface.  相似文献   
8.
A polymer electrolyte membrane is considered as the heart of fuel cells. Here we report the preparation of proton exchange membranes (PEMs) of poly (vinylidene fluoride) (PVDF) blend poly (methyl methacrylate)-co-poly (sodium-4-styrene sulfonate) (PMMA-co-PSSNa) by solvent evaporation method. Three different types of PEMs have been prepared by using different ratios of PVDF and PMMA-co-PSSNa copolymer. We have investigated the effect of concentration of PVDF on water uptake, ion exchange capacity, mechanical, thermal, and oxidative stability, proton conductivity (Km), and methanol permeability (PM) of the blend membranes. These blend PEMs showed good physicochemical and electrochemical properties along with thermal and oxidative stability. The membrane prepared from PVDF (45% w/w) to PMMA-co-PSSNa (55% w/w) exhibited optimum PM at room temperature (8.38 × 10?7 cm2s?1). This low fuel crossover and high relative selectivity can make our prepared blend membranes a potential candidate in polymer electrolyte membrane fuel cells (PEMFCs) or direct methanol fuel cells (DMFCs).  相似文献   
9.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
10.
Reasonable construction of heterostructure is of significance yet a great challenge towards efficient pH-universal catalysts for hydrogen evolution reaction (HER). Herein, a facial strategy coupling gas-phase nitridation with simultaneous heterogenization has been developed to synthesize heterostructure of one-dimensional (1D) Mo3N2 nanorod decorated with ultrathin nitrogen-doped carbon layer (Mo3N2@NC NR). Thereinto, the collaborative interface of Mo3N2 and NC is conducive to accomplish rapid electron transfer for reaction kinetics and weaken the Mo–Hads bond for boosting the intrinsic activity of catalysts. As expected, Mo3N2@NC NR delivers an excellent catalytic activity for HER with low overpotentials of 85, 129, and 162 mV to achieve a current density of 10 mA cm?2 in alkaline, acidic, and neutral electrolytes, respectively, and favorable long-term stability over a broad pH range. As for practical application in electrocatalytic water splitting (EWS) under alkaline, Mo3N2@NC NR || NiFe-LDH-based EWS also exhibits a low cell voltage of 1.55 V and favorable durability at a current density of 10 mA cm?2, even surpassing the Pt/C || RuO2-based EWS (1.60 V). Consequently, the proposed suitable methodology here may accelerate the development of Mo-based electrocatalysts in pH-universal non-noble metal materials for energy conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号