首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  轻工业   3篇
  2017年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Biological activities of chitosan and chitooligosaccharides   总被引:2,自引:0,他引:2  
Chitosan and its oligosaccharides, which are known to possess multiple functional properties, have attracted considerable interest due to their biological activities and potential applications in the food, pharmaceutical, agricultural and environmental industries. Many researchers have focused on chitosan as a potential source of bioactive materials in the past few decades. This review focuses on the biological activities of chitosan and chitooligosaccharides based on our and others’ latest research results, including hypocholesterolemic, antimicrobial, immunostimulating, antitumor and anticancer effects, accelerating calcium and iron absorption, anti-inflammatory, antioxidant and Angiotensin-I-converting enzyme (ACE) inhibitory activities and so on, which are all correlated with their structures and physicochemical properties. The bioactivities summarized here may provide novel insights into the functions of chitosan, its derivatives or oligosaccharides and potentially enable their use as functional-food components and additives.  相似文献
2.
This study determined the hypocholesterolaemic effects of chitosan preparations with different physicochemical properties. Chitosans with smaller particle size had better cholesterol-binding capacities. Chitosans exhibited potent hypocholesterolaemic effect in rats; those with higher degree of deacetylation and molecular weight seemed to reduce plasma triglyceride, total cholesterol and low-density-lipoprotein cholesterol levels and elevate the high-density-lipoprotein cholesterol level more effectively, although not all differences were significant. We concluded that the hypocholesterolaemic mechanism of chitosan was by adsorption, electrostatic force and entrapment.  相似文献
3.
In the present work, 116 samples were collected and near-infrared reflectance spectroscopy prediction model for determination of moisture, protein, and fat contents of walnut meal were obtained and evaluated. All the samples were analyzed based on the chemical methods. Meanwhile, they were scanned to obtain their near-infrared reflectance spectrum in the wavelength range of 570–1840 nm. Several preprocess treatments including scattering pretreatments, mathematical pretreatments, and aggression methods were optimized to increase the accuracy of the calibration models according to the coefficient of determination for calibration (Rc2) and the cross-validation (one minus the variance ratio, 1-VR), and the standard error of calibration and cross-validation. The results showed modified partial least square loading was the better aggression method to predict the moisture, proteins, and fats in walnut kernel. The calibration equations obtained indicated that near-infrared reflectance spectroscopy had excellent predictive capacity for the three components with Rc2 = 0.965, standard error of calibration = 0.052 for moisture, and Rc2 = 0.967, standard error of calibration = 0.191 for proteins, and Rc2 = 0.979, standard error of calibration = 0.171 for fats, respectively. The external validation further confirmed the robustness and reliability of the near-infrared reflectance spectroscopy prediction models with the correlation coefficient of actual and predicted values (R2) = 0.952, ratio of performance deviation = 4.14, the standard error of prediction =0.058 for moisture, and R2 = 0.977, ratio of performance deviation = 5.55, standard error of prediction = 0.182 for proteins, and R2 = 0.990, ratio of performance deviation = 8.64, standard error of prediction = 0.191 for fats, respectively. Near-infrared reflectance spectroscopy is a reliable technology to predict these constituents in walnuts.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号