首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387359篇
  免费   29964篇
  国内免费   15872篇
电工技术   23304篇
技术理论   57篇
综合类   24890篇
化学工业   62313篇
金属工艺   21994篇
机械仪表   24942篇
建筑科学   29907篇
矿业工程   12662篇
能源动力   11721篇
轻工业   22652篇
水利工程   6941篇
石油天然气   24865篇
武器工业   3575篇
无线电   43372篇
一般工业技术   44947篇
冶金工业   20580篇
原子能技术   4002篇
自动化技术   50471篇
  2024年   554篇
  2023年   5528篇
  2022年   8486篇
  2021年   13831篇
  2020年   11234篇
  2019年   8813篇
  2018年   10061篇
  2017年   11630篇
  2016年   9708篇
  2015年   14019篇
  2014年   18474篇
  2013年   22708篇
  2012年   25191篇
  2011年   27692篇
  2010年   24309篇
  2009年   23168篇
  2008年   22781篇
  2007年   22019篇
  2006年   22481篇
  2005年   19566篇
  2004年   13020篇
  2003年   11607篇
  2002年   10811篇
  2001年   9763篇
  2000年   9252篇
  1999年   10398篇
  1998年   8457篇
  1997年   7025篇
  1996年   6557篇
  1995年   5555篇
  1994年   4502篇
  1993年   3171篇
  1992年   2535篇
  1991年   1987篇
  1990年   1526篇
  1989年   1240篇
  1988年   986篇
  1987年   639篇
  1986年   499篇
  1985年   303篇
  1984年   220篇
  1983年   179篇
  1982年   181篇
  1981年   107篇
  1980年   119篇
  1979年   64篇
  1978年   35篇
  1977年   39篇
  1976年   55篇
  1975年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Fiber production from inorganic industrial solid wastes is an effective waste management strategy. Because of cost considerations, most enterprises generally use local solid wastes as raw materials to produce fibers. In this study, we explored the feasibility of producing fibers using fly ash and magnesium slag. The results show that the melting temperature of the blends composed of fly ash, magnesium slag, and a small amount of calcined dolomite first decreased and then increased with an increase in acidity coefficient (Mk) from 1.0 to 2.4. The samples could form a eutectic system in the Mk range of 1.4–1.8, and therefore have a relatively low melting temperature in this Mk range. Fly ash could react with magnesium slag and calcined dolomite to form akermanite, gehlenite-magnesium, and anorthite at temperatures close to the melting temperature; therefore, these crystalline phases were the main reaction products formed in the samples with Mk values lower than 1.80. Anorthite reacted further with some Na-containing and Si-containing spieces to produce labradorite. Thus, the content of anorthite and labradorite rapidly increased and they became the major crystal phases in the blend samples with Mk values greater than 1.80. MAS-NMR spectroscopic analysis revealed that the network structure of the melts depended on the ratio of bridging oxygen to non-bridging oxygen; a high ratio of bridging oxygen to non-bridging oxygen could lead to the formation of a dense network structure in the melt. The blends of fly ash and magnesium slag can be used to produce wool fibers and continuous fibers. In addition, the suitable temperature ranges for the production of both types of fibers were determined. The drawing temperature for continuous fiber production depended on the degree of polymerization and structure of the melt.  相似文献   
2.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
3.
Because of its ability to change optical absorption dynamically by applied electric field, nickel oxide (NiO) is a promising anodic material in smart windows, which can improve energy conversion efficiency in construction buildings. Although many works have achieved high electrochromic performance with different method. The underlying mechanism is still not fully investigated. In this article, we prepared the NiO films with large specific surface area and high stability by electron beam evaporation. X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to figure out the surface morphology and composition of as-deposited films. Afterwards, the electrochemical properties and optical performance of the prepared NiO films were investigated. On this basis, the origin of surface charge was fully analyzed by cyclic voltammetry and diffusion coefficient test. These experimental and theoretical results firmly confirm that both the surface reaction and capacitive effect bring about the excellent EC performance in NiO films. These results not only provide clear evidence about electrochemical kinetics in NiO films, but also offer some useful guidelines for the design of EC materials with higher performance and longer stability.  相似文献   
4.
Owing to the prohibition of cosmetic animal testing, various attempts have recently been made using skin-on-a-chip (SOC) technology as a replacement for animal testing. Previously, we reported the development of a pumpless SOC capable of drug testing with a simple drive using the principle that the medium flows along the channel by gravity when the chip is tilted using a microfluidic channel. In this study, using pumpless SOC, instead of drug testing at the single-cell level, we evaluated the efficacy of α-lipoic acid (ALA), which is known as an anti-aging substance in skin equivalents, for skin tissue and epidermal structure formation. The expression of proteins and changes in genotyping were compared and evaluated. Hematoxylin and eosin staining for histological analysis showed a difference in the activity of fibroblasts in the dermis layer with respect to the presence or absence of ALA. We observed that the epidermis layer became increasingly prominent as the culture period was extended by treatment with 10 μM ALA. The expression of epidermal structural proteins of filaggrin, involucrin, keratin 10, and collagen IV increased because of the effect of ALA. Changes in the epidermis layer were noticeable after the ALA treatment. As a result of aging, damage to the skin-barrier function and structural integrity is reduced, indicating that ALA has an anti-aging effect. We performed a gene analysis of filaggrin, involucrin, keratin 10, integrin, and collagen I genes in ALA-treated human skin equivalents, which indicated an increase in filaggrin gene expression after ALA treatment. These results indicate that pumpless SOC can be used as an in vitro skin model similar to human skin, protein and gene expression can be analyzed, and it can be used for functional drug tests of cosmetic materials in the future. This technology is expected to contribute to the development of skin disease models.  相似文献   
5.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
6.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
7.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
8.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
9.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
10.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号