首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207608篇
  免费   21686篇
  国内免费   9408篇
电工技术   6409篇
技术理论   2篇
综合类   12193篇
化学工业   60282篇
金属工艺   11678篇
机械仪表   8537篇
建筑科学   8918篇
矿业工程   5247篇
能源动力   4638篇
轻工业   34578篇
水利工程   2517篇
石油天然气   7944篇
武器工业   1080篇
无线电   18919篇
一般工业技术   25528篇
冶金工业   8017篇
原子能技术   2215篇
自动化技术   20000篇
  2024年   430篇
  2023年   3595篇
  2022年   5266篇
  2021年   8693篇
  2020年   6909篇
  2019年   6671篇
  2018年   6150篇
  2017年   7737篇
  2016年   9137篇
  2015年   9787篇
  2014年   12497篇
  2013年   13293篇
  2012年   13775篇
  2011年   15185篇
  2010年   11383篇
  2009年   12166篇
  2008年   10699篇
  2007年   13550篇
  2006年   12746篇
  2005年   10954篇
  2004年   8449篇
  2003年   7663篇
  2002年   6187篇
  2001年   4421篇
  2000年   3821篇
  1999年   3067篇
  1998年   2423篇
  1997年   1852篇
  1996年   1764篇
  1995年   1483篇
  1994年   1390篇
  1993年   1031篇
  1992年   794篇
  1991年   648篇
  1990年   517篇
  1989年   414篇
  1988年   278篇
  1987年   248篇
  1986年   229篇
  1985年   206篇
  1984年   190篇
  1983年   135篇
  1982年   122篇
  1981年   87篇
  1980年   125篇
  1979年   59篇
  1978年   33篇
  1977年   36篇
  1964年   34篇
  1962年   64篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
Retrieving 3D shapes with 2D images has become a popular research area nowadays, and a great deal of work has been devoted to reducing the discrepancy between 3D shapes and 2D images to improve retrieval performance. However, most approaches ignore the semantic information and decision boundaries of the two domains, and cannot achieve both domain alignment and category alignment in one module. In this paper, a novel Collaborative Distribution Alignment (CDA) model is developed to address the above existing challenges. Specifically, we first adopt a dual-stream CNN, following a similarity guided constraint module, to generate discriminative embeddings for input 2D images and 3D shapes (described as multiple views). Subsequently, we explicitly introduce a joint domain-class alignment module to dynamically learn a class-discriminative and domain-agnostic feature space, which can narrow the distance between 2D image and 3D shape instances of the same underlying category, while pushing apart the instances from different categories. Furthermore, we apply a decision boundary refinement module to avoid generating class-ambiguity embeddings by dynamically adjusting inconsistencies between two discriminators. Extensive experiments and evaluations on two challenging benchmarks, MI3DOR and MI3DOR-2, demonstrate the superiority of the proposed CDA method for 2D image-based 3D shape retrieval task.  相似文献   
2.
《Journal of dairy science》2022,105(8):7097-7110
Biotin (B8), folate (B9), and vitamin B12 (B12) are involved in several metabolic reactions related to energy metabolism. We hypothesized that a low supply of one of these vitamins during the transition period would impair metabolic status. This study was undertaken to assess the interaction between B8 supplement and a supplementation of B9 and B12 regarding body weight (BW) change, dry matter intake, energy balance, and fatty acid (FA) compositions of colostrum and milk fat from d ?21 to 21 relative to calving. Thirty-two multiparous Holstein cows housed in tie stalls were randomly assigned, according to their previous 305-d milk yield, to 8 incomplete blocks in 4 treatments: (1) a 2-mL weekly i.m. injection of saline (0.9% NaCl; B8?/B9B12?); (2) 20 mg/d of dietary B8 (unprotected from ruminal degradation) and 2-mL weekly i.m. injection of 0.9% NaCl (B8+/B9B12?); (3) 2.6 g/d of dietary B9 (unprotected) and 2-mL weekly i.m. injection of 10 mg of B12 (B8?/B9B12+); (4) 20 mg/d of dietary B8, 2.6 g/d of dietary B9, and 2-mL weekly i.m. injection of 10 mg of B12 (B8+/B9B12+) in a 2 × 2 factorial arrangement. Colostrum was sampled at first milking. and milk samples were collected weekly on 2 consecutive milkings and analyzed for FA composition. Body condition score and BW were recorded every week throughout the trial. Within the first 21 d of lactation, B8?/B9B12+ cows had an increased milk yield by 13.5% [45.5 (standard error, SE: 1.8) kg/d] compared with B8?/B9B12? cows [40.1 (SE: 1.9)], whereas B8 supplement had no effect. Even though body condition score was not affected by treatment, B8?/B9B12+ cows had greater BW loss by 24 kg, suggesting higher mobilization of body reserves. Accordingly, milk de novo FA decreased and preformed FA concentration increased in B8?/B9B12+ cows compared with B8?/B9B12? cows. In addition, cows in the B8+/B9B12? group had decreased milk de novo FA and increased preformed FA concentration compared with B8?/B9B12? cows. Treatment had no effect on colostrum preformed FA concentration. Supplemental B8 decreased concentrations of ruminal biohydrogenation intermediates and odd- and branched-chain FA in colostrum and milk fat. Moreover, postpartum dry matter intake for B8+ cows tended to be lower by 1.6 kg/d. These results could indicate ruminal perturbation caused by the B8 supplement, which was not protected from rumen degradation. Under the conditions of the current study, in contrast to B8+/B9B12? cows, B8?/B9B12+ cows produced more milk without increasing dry matter intake, although these cows had greater body fat mobilization in early lactation as suggested by the FA profile and BW loss.  相似文献   
3.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
4.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
5.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
6.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
7.
The structural diversity of polyphenols and the inherent limitations of current extraction techniques pose a challenge to extract polyphenols using a simple and green method. Hence, in this study, a method was developed to simultaneously fractionate multiple classes of polyphenols by only varying ethanol-water solutions. Honeybush tea, which is rich in polyphenols, was selected as a model for this study. Solvent extraction followed by solid-phase extraction (SPE) was developed to obtain a polyphenol-rich fraction from six honeybush samples. Based on a gradient elution programme (10%, 30%, 50%, 70% and 90% (v/v) ethanol-water solution) of SPE, the Strata X cartridge showed a better recovery of most targeted polyphenols under 0.9 mL of the drying volume and 1 mL min−1 of the dispensing speed. The elution programme for fractionating most polyphenols was as follows: single elution with 50% ethanol, followed by twice elution with 70% ethanol. The antioxidant capacity was used to analyse the differences among the polyphenol-rich fractions from six honeybush samples. Principal component analysis (PCA) revealed that unfermented C. genistoides (GG) has the greatest antioxidant capacity among the honeybush species studied. Additionally, mangiferin, isomangiferin and vicenin-2 were the main contributors to the antioxidant capacity in six honeybush fractions according to the correlation study.  相似文献   
8.
益生菌可在肠道定植从而发挥抗炎或抗氧化活性,有利于宿主肠道健康。本实验研究了从新疆传统发酵乳制品中分离得到的8?株植物乳杆菌对大肠杆菌侵袭和过氧化氢刺激肠上皮细胞HT-29的保护作用。结果表明:在8?株植物乳杆菌中,植物乳杆菌35具有最高的黏附能力。植物乳杆菌35可通过取代、竞争、排阻的方式抑制大肠杆菌对HT-29细胞的黏附,抑制率分别为42.60%、59.17%、60.19%。植物乳杆菌35及其多糖可抑制大肠杆菌刺激HT-29细胞产生白细胞介素-8;同时保护HT-29细胞免受过氧化氢的损伤,增加超氧化物歧化酶、谷胱甘肽过氧化物酶活力水平并降低丙二醛含量。结论:植物乳杆菌35及其粗胞外多糖具有抑制大肠杆菌O157诱导的炎症性肠病的潜力。  相似文献   
9.
With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of material properties can be elicited from cellular solids, also known as metamaterials, architected foams, programmable materials, or lattice structures. Metamaterials are designed and optimized under the assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real lattices contain thousands or even millions of complex features, each with imperfections in shape and material constituency. While the role of these defects on the mean properties of metamaterials has been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial next step for high reliability aerospace or biomedical applications. In this work we show that it is precisely the large quantity of features that serves to homogenize the heterogeneities of the individual features, thereby reducing the variability of the collective structure and achieving effective properties that can be even more consistent than the monolithic base material. In this first statistical study of additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative densities. The variability in yield strength and modulus was observed to exponentially decrease with feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic model or a finite element beam model. The latter provides an efficient pathway to extend the current concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the homogenizing benefit of lattices, but also provide governing design principles that can be used to mitigate manufacturing inconsistencies via topological design.  相似文献   
10.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号