首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   5篇
  国内免费   2篇
化学工业   15篇
建筑科学   1篇
能源动力   2篇
轻工业   5篇
石油天然气   1篇
一般工业技术   4篇
自动化技术   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1998年   2篇
  1979年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
通过溶剂交换法将Laponite从水中转移到N,N二甲基乙酰胺(DMAC)中,辅助以超声波作用使Laponite与聚甲基丙烯酸甲酯(PMMA)溶液进行共混复合制备PMMA/Laponite复合材料,并表征其相关性能。  相似文献   
2.
Wendy Loyens 《Polymer》2005,46(3):915-928
The present study focuses on the preparation of poly(ethylene oxide) (PEO) nanocomposites based on the synthetic Laponite clay. The clay was added both in its pure form as well as organically modified with low molar mass poly(ethylene glycol) (PEG) components in order to enhance the compatibility between Laponite and PEO. Several PEG's with different end groups were used. Almost all of them were found to intercalate in the clay intergallery spacing. An order of intercalation efficiency could be established. The modified clays displayed a good thermal stability at the nanocomposite processing temperature.The nanocomposites based on the pure Laponite clay as well as the modified clays display an intercalated structure with a modest intergallery spacing. The ion-dipole modification with the PEG's was ineffective in improving the compatibility between PEO and the Laponite silicate layers. Their respective mechanical properties were found to be increased a little, which can be attributed to the low effective aspect ratio of the silicate platelets present in the nanocomposites. This is caused by the low initial aspect ratio of Laponite (w/t=25) and the limited basal spacing increase. The addition of clay does not result in nucleation of the PEO crystallisation. In contrast, the crystallisation was inhibited, resulting in decreased heat of fusions, especially for the pure Laponite nanocomposites. The nanocomposites based on the modified Laponites display a good thermal stability.  相似文献   
3.
《Advanced Powder Technology》2021,32(8):3034-3045
Sustainable production of biofuel and chemical feedstock through catalytic hydrogenation has now received increased attention due to the expeditious depletion of crude oil. In the present investigation, we developed a cost-effective and base metal-based NiCu/Laponite catalyst for liquid-phase hydrogenation of furfural into fuel range components. The robust catalysts were prepared by a simple co-impregnation method with constant loading of 5 wt% NiO with different wt.% of CuO (x) loadings (where x = 8, 10, 12 & 14%) on the Laponite support. The textural properties, surface acidity, and reduction of the synthesized catalysts were studied by employing various physicochemical characterizations such as XRD, N2 sorption analysis, NH3-TPD, H2-TPR, and TGA. The obtained results revealed that optimum loading of 12% CuO and 5% NiO catalyst aids fine dispersion of copper and nickel oxide on the surface of the support. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images displayed the delamination of Laponite particles and dispersion of Ni-Cu catalyst on the support surface. The hydrogenation efficiency of the synthesized catalysts was tested in a bench top stainless steel autoclave reactor by liquid phase reaction condition of furfural at 150–210 °C under 10–25 bar H2 pressure for 1–6 h. The excellent activity of 5Ni-12Cu/Laponite catalysts was compared and correlated with the physicochemical characteristics of the catalyst.  相似文献   
4.
Quartz sand columns and sand-filled microscope flow cells were used to investigate the transport characteristics of the clay colloid laponite, and a biofilm-forming bacterium, Pseudomonas aeruginosa SG81. Separate experiments were performed with each particle to determine their individual transport characteristics in clean sand columns. In a second set of experiments, bacterial biofilms were formed prior to introduction of the clay colloids. In the independent transport experiments, bacteria and laponite each conformed to known physicochemical principles. A sodium chloride concentration of 7 x 10(-2) M caused complete retention of the laponite within the sand columns. P. aeruginosa SG81 was generally less influenced by ionic strength effects; it showed relatively low mobility at all ionic strengths tested and some (albeit reduced) mobility when introduced to the columns in 1M NaCl, the highest concentration tested, but nevertheless showed reproducible trends. Under conditions favourable to laponite retention and biofilm stability (7 x 10(-2) MNaCl), laponite suspensions were able to remobilise a portion of the attached bacterial biomass. At low ionic strength, the profile of laponite elution was also altered in the presence of a P. aeruginosa biofilm. These observations suggest that while a reduction in ionic strength has a dominant influence on the mobilisation of biological and inorganic colloids, the presence of laponite and biomass can have a distinct influence on the mobility of both types of colloids. Since these events are likely to occur in subsurface environments, our results suggest that colloid-biofilm interactions will have implications for colloid-bound contaminant transport and the remobilisation of pathogens.  相似文献   
5.
The use of the synthetic inorganic colloid ‘Laponite’ as a toothpaste binder is reviewed. Variables examined include the effect of polishing agent, humectant type and cellulosic co-binder. Results indicate that stable pastes may be prepared using a blend of Laponite and sodium carboxymethyl cellulose with a small reduction in overall binder level. The maximum binder reduction is achieved using sorbitol as the sole humectant. A simple comparison test also indicates that flavour level may be reduced by up to 25%. L'hectorite synthetique – un nouveau liant pour dentifrices  相似文献   
6.
In this work the ageing dynamics of soft solids of aqueous suspension of laponite has been investigated under the oscillatory stress field. We observed that, at small stresses elastic and viscous moduli showed a steady rise with the elastic modulus increasing at a faster rate than the viscous modulus. However, at higher stresses both the moduli underwent a sudden rise by several orders of magnitude with the onset of rise getting shifted to a higher age for a larger shear stress. We believe that the observed behavior is due to interaction of barrier height distribution of the potential energy wells in which the particle is trapped and strain induced potential energy enhancement of the particles. Strain induced in the material causes yielding of the particles that are trapped in the shallower wells. Those trapped in the deeper wells continue to age enhancing the cage diffusion timescale and consequently the viscosity, which lowers the magnitude of strain allowing more particles to age. This coupled dependence of strain, viscosity and ageing causes forward feedback for a given magnitude of stress leading to sudden rise in both the moduli. Changing the microstructure of the laponite suspension by adding salt affected the barrier heights distribution that showed a profound influence on the ageing behavior. Interestingly, this study suggests a possibility that any apparently yielded material with negligible elastic modulus may get jammed at a very large waiting time.  相似文献   
7.
实验利用壳聚糖作为锂皂石稳定ASA乳液的胶体保护剂,研究了壳聚糖用量对锂皂石稳定的ASA乳液性质和施胶性能的影响,探讨了硫酸铝用量、浆料pH值对壳聚糖-锂皂石联合稳定的ASA乳液施胶性能的影响,并对乳液的水解稳定性进行了分析。结果表明,壳聚糖的加入使乳液的稳定性稍有降低,但有利于增加ASA乳液的施胶性能。加入硫酸铝促进ASA的施胶,且少量的硫酸铝就可使乳液获得良好的施胶性,在浆料pH值为5~9的范围内,乳液具有良好的施胶性能,并在浆料pH值为7时,施胶效果最佳,乳液放置120 min后,施胶效果仅降低10%,具有很好的水解稳定性。  相似文献   
8.
Polyamidoamine hyperbranched polymer (Hyp)/clay nanocomposites were synthesized by using both of montmorillonite and laponite clays. Poly amidoamine hyperbranched polymer (Hyp) was prepared by one‐pot polymerization via couple monomer methodology. Afterward, the amino ends of Hyp were modified with methyl methacrylate (MMA), styrene (St) and butyl methacrylate (n‐BuMA) polymers which were previously prepared via ATRP (atom transfer radical polymerization) to form the corresponding new hyperbranched polymers Hyp1, Hyp2 and Hyp3. Those formed polymers were inserted into the modified clay, such as montmorillonite and laponite to form their nanocomposites. The formed polymer/clay nanocomposites were characterized via XRD, TEM, and thermal analyses. The formed hyperbranched polymers generally showed intercalation behavior more than the exfoliation one mostly because of the bulkiness of the hyperbranched skeleton. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
9.
In this study, the ionic conductivity behavior in hybrid gelatin-based transparent electrolytes including various types of nanoclays with different size, shape and surface properties was characterized. The effects of nanoclay type and nanoclay concentration as well as different experimental conditions, e.g., pH, temperature and crosslinking were also investigated. In general, the impedance spectroscopy results suggested a non- trivial role for nanoclay. Regardless of the nanoclay type, the ionic conductivity slightly increased first and then decreased by increasing the nanoclay concentration. Furthermore, among sodium montmorillonite (Na+MMT), lithium montmorillonite (Li+MMT), laponite and hydrotalcite, the hybrid electrolytes prepared by Li+MMT showed higher ionic conductivity. The results also showed that the chemical crosslinking along with sample preparation at optimum pH, where the gelatin chains might be efficiently adsorbed on exfoliated, negatively charged clay nanosheets, plays an important role. In comparison with the ionic conductivity of the neat sample at room temperature (~10-7 S cm-1), a ten-fold increase was observed for the crosslinked sample containing 2 wt% of Li^+MMT prepared at optimum pH 3.5. The conductivity behavior as a function of temperature revealed the obedience with the VogeI-Fulcher-Tammann (VFT) model for all samples, suggesting the important role of segmental motions in the ionic conductivity. Finally, a qualitative explanation was presented for the mechanism of the ionic conduction in gelatin-nanoclay hybrid electrolytes.  相似文献   
10.
Nanoclay‐containing organogels were prepared by exfoliating layered silicate nanoclay (Laponite® and montmorillonite, aspect ratio 30 and 250) in organogels made in glycerol solutions. Zeta potential of the binding profile between clay and gelatin chains in the milieu of glycerol was consistent with a surface patch binding mechanism. To achieve customized thermal and viscoelastic properties, optimum binding of nanoclay to gelatin was probed, and it was noticed that [clay] = 0.03% (w/v) and [glycerol] = 30% (v/v) produced the best results. Gelation temperature Tgel (Laponite organogels) increased from 28 to 34 °C (ca 21% change) with a concomitant increase in gel elastic modulus from 400 to 1200 Pa (ca 300% change). For montmorillonite organogels, it was possible to raise Tgel further to 43 °C (56% change). X‐ray diffraction data and Cole–Cole plots indicated that clay platelets were homogeneously exfoliated in the organogel matrix. Thus, the thermoviscoelastic properties of gelatin organogels could be modulated to raise the gelation temperature to 43 °C, and gel strength to 1200 Pa by the addition of nanoclay whose concentration may not exceed 0.03% (w/v). Considering the wide application of gelatin gels in pharmaceuticals, food preservation and personal care products, the aforesaid enhancement in physical properties is significant. © 2016 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号