首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   19篇
  国内免费   1篇
化学工业   47篇
能源动力   1篇
轻工业   71篇
石油天然气   2篇
一般工业技术   3篇
  2023年   1篇
  2022年   1篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   10篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有124条查询结果,搜索用时 453 毫秒
1.
2.
Yarrowia lipolytica is known to have the ability to assimilate hydrophobic substrates like triglycerides, fats, and oils, and to produce single-cell oils, lipases, and organic acids. The aim of the present study was to investigate the effects of different oil sources (borage, canola, sesame, Echium, and trout oils) and oil industry residues (olive pomace oil, hazelnut oil press cake, and sunflower seed oil cake) on the growth, lipid accumulation, and lipase and citric acid production by Y. lipolytica YB 423-12. The maximum biomass and lipid accumulation were observed with linseed oil. Among the tested oil sources and oil industry residues, hazelnut oil press cake was the best medium for lipase production. The Y. lipolytica YB 423-12 strain produced 12.32 ± 1.54 U/mL (lipase activity) of lipase on hazelnut oil press cake medium supplemented with glucose. The best substrate for citric acid production was found to be borage oil, with an output of 5.34 ± 0.94 g/L. The biotechnological production of valuable metabolites such as single-cell oil, lipase, and citric acid could be achieved by using these wastes and low-cost substrates with this strain. Furthermore, the cost of the bio-process could also be significantly reduced by the utilization of various low-cost raw materials, residues, wastes, and renewable resources as substrates for this yeast.  相似文献   
3.
4.
5.
Some odorant lactones are naturally present in fruits or in fermented products; they can also be used as food additives and can be produced by microorganisms at the industrial scale by biotechnological processes. Gamma-decalactone was previously shown to have antimicrobial properties. We determined by infrared spectroscopy measurements that this compound rapidly diffused into model phospholipid bilayers (within 2 min), modifying the general physical state of a dimyristoyl-L-alpha-phosphatidylcholine (DMPC) film. In vivo, the lactone strongly increased membrane fluidity in the model yeast Yarrowia lipolytica, as evaluated by fluorescence anisotropy measurements. This effect was more important than that of benzyl alcohol, which is known as a fluidizing agent in living cells, and may explain the toxic action of gamma-decalactone in microorganisms.  相似文献   
6.
BACKGROUND: Microorganisms have often been considered for the production of oils and fats as an alternative to agricultural and animal resources. Extraction experiments were performed using a strain of the yeast Yarrowia lipolytica (Y. lipolytica), a high‐lipid‐content yeast. Three different methods were tested: Soxhlet extraction, accelerated solvent extraction (ASE) and supercritical carbon dioxide (SCCO2) extraction using ethanol as a co‐solvent. Also, high pressure solubility measurements in the systems ‘CO2 + yeast oil’ and ‘CO2 + ethanol + yeast oil’ were carried out. RESULTS: The solubility experiments determined that, at the conditions of the supercritical extractor (40 °C and 20 MPa), a maximum concentration of 10 mg of yeast oil per g of solvent can be expected in pure CO2. 10% w/w of ethanol in the solvent mixture increased this value to almost 15 mg of yeast oil per g of solvent. Different pretreatments were necessary to obtain satisfactory yields in the extraction experiments. The Soxhlet and the ASE method were not able to complete the lipid extraction. The ‘SCCO2 + ethanol’ extraction curves revealed the influence of the different pretreatments on the extraction mechanism. CONCLUSION: Evaluating the effectiveness of a given pretreatment, ASE reduced the amount of material and solvent used compared with Soxhlet. In all three cases, the best total extraction performance was obtained for the ethanol‐macerated yeast (EtM). Addition of ethanol to the solvent mixture enhanced the oil solubility. Oil can be extracted from Y. lipolytica in two different steps: a non‐selective ethanol extraction followed by TAG‐selective SCCO2 purification. © 2012 Society of Chemical Industry  相似文献   
7.
The yeast Candida deformans CBS 2071 produces an extracellular lipase which was shown to catalyse the production of various esters by the esterification of free fatty acids, even in the presence of a large molar excess of water. To clone the gene encoding this extracellular lipase, Saccharomyces cerevisiae was transformed with C. deformans genomic libraries and screened for lipolytic activity on a medium containing rapeseed oil emulsion and rhodamine B. Three members of a lipase gene family (CdLIP1, CdLIP2 and CdLIP3) were cloned and characterized. Each deduced lipase sequence has a Gly-His-Ser-Leu-Gly-(Gly/Ala)-Ala conserved motif, eight cysteine residues and encodes an N-terminal signal sequence. MALDI-TOF mass spectrometry analysis of a proteolytic digest of the lipase produced was used to obtain experimental evidence that the CdLIP1 gene encoded the extracellular lipase. Recombinant expression studies confirmed that the cloned genes encoded functional lipases. The three lipases are very similar to lipases from the related species Yarrowia lipolytica. Significant homologies were also found with several yeast and fungal lipases. As C. deformans CBS 2071 was previously considered to be synonymous with Y. lipolytica, the strains were compared for the extent of nucleotide divergence in the variable regions (D1/D2) at the 5'-end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region has diverged sufficiently to suggest that C. deformans is a separate species. The nucleotide sequences of the CdLIP1, CdLIP2 and CdLIP3 genes will appear in the EMBL nucleotide sequence database under Accession Nos AJ428393, AJ428394 and AJ428395, respectively.  相似文献   
8.
This study reports on the effects of internal fermenter and external in‐line agitation and fed‐batch mode of operation on citric acid production from Candida lipolytica using n‐paraffin as the carbon source. An optimum range of fermenter agitation speeds in the range 800–1000 rpm corresponding to Reynolds numbers of 50433–62947 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Proof of concept evidence is presented that indicates that an external in‐line agitator could be used in place of high speed internal agitation to increase citric acid production. However, more work is required to optimize the external agitator concept. Application of multiple fed‐batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. Experiments were conducted implementing a three‐cycle fed‐batch process which increased overall citric acid yields to 0.8–1.0 g citric acid g?1 n‐paraffin, approximately 200% improvement from those found in the normal batch process. The three‐cycle fed‐batch mode of operation also increased the final citric acid concentration to 42 g dm?3 from about 6 g dm?3 for normal batch operation. Increased citric acid concentrations in three‐cycle fed‐batch mode was achieved at longer fermentation times. Copyright © 2004 Society of Chemical Industry  相似文献   
9.
10.
Yarrowia lipolytica DO613, carrying the xpr6-13 mutation, secretes an inactive precursor of alkaline extracellular protease that has not been cleaved after the Lys-Arg at the end of the pro-region. Compared to wild type, DO613 membrane preparations had significantly reduced ability to cleave after Lys-Arg of an artificial substrate. The XPR6 gene was cloned by complementation by screening for restoration of production of alkaline protease activity. Sequencing of a 3735 base pair SalI-SphI XPR6 fragment revealed a large open reading frame with a coding capacity of 976 amino acids (molecular weight, 110 016). The deduced amino acid sequence had significant homology to Saccharomyces cerevisiae Kex2p, a processing endoprotease that cleaves after pairs of basic amino acids. Disruption of the XPR6 gene was not lethal, but it resulted in several phenotypic changes. First, essentially no mature alkaline extracellular protease was produced indicating that the low levels produced by strains carrying previously isolated xpr6 alleles were due to leaky mutations. Second, mating type B strains carrying the disrupted XPR6 gene did not mate, but mating type A strains did. Third, the XPR6 disruption strains grew poorly on rich media at pH 5·5 and above. Cells remained physically attached after budding and continued to bud forming large dog balloon-like structures. In addition, these structures aggregated forming visible clumps in liquid culture. These growth aberrations were largely eliminated by growing cells in medium at pH 4. Fourth, no mycelial forms were observed regardless of the pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号