首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56141篇
  免费   6472篇
  国内免费   3591篇
电工技术   7490篇
综合类   4937篇
化学工业   5781篇
金属工艺   907篇
机械仪表   3214篇
建筑科学   6078篇
矿业工程   1769篇
能源动力   2985篇
轻工业   5333篇
水利工程   758篇
石油天然气   1335篇
武器工业   1018篇
无线电   8911篇
一般工业技术   5114篇
冶金工业   1714篇
原子能技术   401篇
自动化技术   8459篇
  2024年   103篇
  2023年   602篇
  2022年   1033篇
  2021年   1422篇
  2020年   1640篇
  2019年   1276篇
  2018年   1202篇
  2017年   1703篇
  2016年   1876篇
  2015年   2090篇
  2014年   3662篇
  2013年   3531篇
  2012年   4528篇
  2011年   4800篇
  2010年   3693篇
  2009年   3730篇
  2008年   3477篇
  2007年   4367篇
  2006年   3948篇
  2005年   3252篇
  2004年   2694篇
  2003年   2397篇
  2002年   1943篇
  2001年   1551篇
  2000年   1209篇
  1999年   922篇
  1998年   693篇
  1997年   557篇
  1996年   488篇
  1995年   429篇
  1994年   304篇
  1993年   240篇
  1992年   190篇
  1991年   140篇
  1990年   96篇
  1989年   86篇
  1988年   60篇
  1987年   38篇
  1986年   31篇
  1985年   37篇
  1984年   41篇
  1983年   30篇
  1982年   18篇
  1981年   13篇
  1980年   13篇
  1979年   8篇
  1978年   12篇
  1977年   4篇
  1975年   4篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
2.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
3.
The development of efficient filters is an essential part of industrial machinery design, specifically to increase the lifespan of a machine. In the filter chamber design considered in this study, the magnetic material is placed along the horizontal surface of the filter chamber. The inside of the filter chamber is layered with a porous material to restrict the outflow of unwanted particles. This study aims to investigate the flow, pressure, and heat distribution in a dilating or contracting filter chamber with two outlets driven by injection through a permeable surface. The proposed model of the fluid dynamics within the filter chamber follows the conservation equations in the form of partial differential equations. The model equations are further reduced to a steady case through Lie's symmetry group of transformation. They are then solved using a multivariate spectral-based quasilinearization method on the Chebyshev–Gauss–Lobatto nodes. Insights and analyses of the thermophysical parameters that drive optimal outflow during the filtration process are provided through the graphs of the numerical solutions of the differential equations. We find, among other results, that expansion of the filter chamber leads to an overall decrease in internal pressure and an increase in heat distribution inside the filter chamber. The results also show that shrinking the filter chamber increases the internal momentum inside the filter, which leads to more outflow of filtrates.  相似文献   
4.
A large-scale high-precision scan stage is important equipment in the industrial productions of micro-fabrication such as flat panel display (FPD) lithography systems. Designing controllers for multi-input multi-output (MIMO) systems is time-consuming and needs experience because of the interaction between each axis and many controller tuning parameters. The aim of this study is to develop a peak filter design method based on frequency response data to reduce repetitive disturbance. This data-based approach does not use the model and only uses the frequency response data of the controlled system and the disturbance spectrum calculated from the scanning error data (Contribution 1). The peak filter is designed by convex optimization and satisfies robust stability conditions for six-degree-of-freedom systems (Contribution 2). The control performance of the designed peak filter is experimentally demonstrated with an industrial MIMO large-scale high-precision scan stage in reducing the scanning error of the main stroke of the translation along the x-axis (Contribution 3).  相似文献   
5.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
6.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
7.
Aluminum, used as a material for heat exchangers in air conditioners, often has problems of leakage of refrigerant on the Al surface due to corrosion. The problems originate from pitting corrosion of the Al in an external environment. To understand corrosion problems, it is necessary to study the corrosion behavior of Al in various environments. In this study, the effects of environmental factors on the corrosion behavior of Al were studied by the surface analysis and electrochemical testing in 3.5 wt% NaCl solutions, with changes of dissolved oxygen, temperature, and concentration of Cl and S ions. Among the external environmental factors, the presence of oxygen and the increase of Cl ion concentration do not significantly affect the corrosion potential of Al, leading to an increase of only 1.1 and 6 times, respectively. There was a significant decrease in the corrosion resistance of Al, approximately 40 and 800 times, respectively, with the increase of concentration of S and temperature.  相似文献   
8.
9.
为探究甘薯脆片热泵干燥最佳工艺,在单因素试验基础上,以烘干温度、烘干时间、切片厚度、汽漂时间为影响因素,以含油率及感官评分为响应值,用Box-Behnken试验设计建立响应面分析模型。结果表明,甘薯脆片烘干最佳工艺为:烘干温度74℃、切片厚度2.7 mm、汽漂时间3 min,烘干时间为3.5 h,在此优化条件下,甘薯脆片油炸后感官评分为88.75分,含油率为7.84%,在此条件下得到的产品色香味俱全。  相似文献   
10.
为表征低阶煤颗粒-气/油泡间矿化过程的差异,通过Sutherland理论下固体颗粒进入泡沫产品的总概率(E)和浮选速率常数(k)之间关系,并结合低阶煤颗粒-气/油泡的浮选速率试验,求得了低阶煤颗粒-气/油泡间的诱导时间。浮选实验研究表明,在相同的捕收剂消耗量下低阶煤-油泡浮选产率均高于低阶煤-气泡浮选产率。诱导时间测试表明,低阶煤颗粒-油泡间的诱导时间(35 ms)要明显低于低阶煤颗粒-气泡间的诱导时间(93 ms)。上述实验结果表明,油泡表面的疏水性要强于传统浮选气泡表面的疏水性。然而,进一步利用Sutherland理论中固体颗粒进入泡沫产品的总概率和浮选速率常数之间的数学关系,并结合低阶煤颗粒-气/油泡的浮选速率试验求得的低阶煤颗粒-气/油泡间的诱导时间分别为9.67和8.46 ms,其与诱导时间测试仪分别测量的诱导时间差异很大。这主要是由于在实际浮选过程中气/油泡的上升速度分别为23.26和22.68 cm/s,其远高于2015EZ型诱导时间仪测试过程中气/油泡碰撞速度(2.0 cm/s)。因此,诱导时间理论计算表明气泡-颗粒间的碰撞速度对颗粒-气泡间的诱导时间影响很大。上述研究结果表明油泡浮选效果优于传统浮选的内在原因在于低阶煤颗粒-油泡间的诱导时间小于低阶煤颗粒-气泡间的诱导时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号