首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33980篇
  免费   4301篇
  国内免费   2217篇
电工技术   1036篇
综合类   2544篇
化学工业   6085篇
金属工艺   6449篇
机械仪表   1565篇
建筑科学   2196篇
矿业工程   930篇
能源动力   754篇
轻工业   5795篇
水利工程   829篇
石油天然气   812篇
武器工业   373篇
无线电   1672篇
一般工业技术   4693篇
冶金工业   3061篇
原子能技术   237篇
自动化技术   1467篇
  2024年   92篇
  2023年   523篇
  2022年   858篇
  2021年   1049篇
  2020年   1201篇
  2019年   1032篇
  2018年   927篇
  2017年   1249篇
  2016年   1139篇
  2015年   1296篇
  2014年   1910篇
  2013年   2013篇
  2012年   2489篇
  2011年   2678篇
  2010年   1972篇
  2009年   2037篇
  2008年   1677篇
  2007年   2398篇
  2006年   2325篇
  2005年   1863篇
  2004年   1567篇
  2003年   1523篇
  2002年   1325篇
  2001年   1146篇
  2000年   850篇
  1999年   663篇
  1998年   458篇
  1997年   384篇
  1996年   343篇
  1995年   279篇
  1994年   237篇
  1993年   183篇
  1992年   164篇
  1991年   132篇
  1990年   101篇
  1989年   108篇
  1988年   59篇
  1987年   24篇
  1986年   22篇
  1985年   39篇
  1984年   25篇
  1983年   24篇
  1982年   30篇
  1981年   11篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1975年   8篇
  1961年   5篇
  1959年   6篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
1.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
2.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
3.
Methanol crossover is one of the main challenges for direct methanol fuel cells (DMFCs). Depositing a metal barrier on Nafion can reduce the crossover but usually faces the metal cracking issues. This study presents a new composite membrane in which an anodic aluminum oxide (AAO) substrate is impregnated with a Nafion solution and then coated with a layer of Au. The AAO/Nafion/Au composite membrane shows an ideal metal crack-free surface. Higher and more stable voltage has been achieved for the cell with the membrane, indicating an effectively suppressed methanol-crossover. Results reveal that there is a tradeoff between suppressing the methanol crossover and increasing the ion transmission. By optimizing the membrane, it can not only suppress the methanol crossover but also enhance the output performance of DMFCs. The current density and power density of the cells can be enhanced by 59% and 52.85%, respectively, compared to the cell with a commercial Nafion 117. Overall, this work provides a new approach to designing crack-free membranes for DMFCs.  相似文献   
4.
5.
6.
7.
《Ceramics International》2022,48(21):31245-31254
Optimization binding system for refractory castables is significant to enhance the service performance. Hydrotalcite has been considered a promoter for high-temperature performance of basic castables, however, its binding property remains to be improved before practical application. In this work, the thermal activated Mg–Al hydrotalcites were incorporated in magnesia castables, and the mutual influence of pre-calcination temperature on the hydration, microstructure, and strength of castables was investigated. The obtained results indicated that the reconstruction of calcined hydrotalcite took place in the hydration process and effectively motivated the hydrolysis. Hydrate was thus promoted and a relatively dense microstructure of magnesia castables was confirmed by X-ray computed tomography analysis. Hydrotalcite pre-calcinated at 300 °C contributed to the highest early strength for castable, and the high-temperature properties also performed better than that of other pre-calcinated hydrotalcite-adding. The enhancement mechanisms of calcined hydrotalcite were attributed to the two following reasons: (ⅰ) the modified microstructure of magnesia castables from the early stage by hydration process, (ⅱ) the further enhanced sinterability inspired by the appropriate thermal activation effect.  相似文献   
8.
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO) play an important role, being the most aggressive towards biomolecules. The reactions of HO with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO, and by CB triplets allowed for assigning transient species to the pathways of products formation.  相似文献   
9.
The electrochemical interactions between aluminum alloy 7075 and low-carbon steels under gelled electrolytes were studied. Such electrolytes provided the opportunity to investigate both thick and thin electrolyte systems. The electrolyte was chemically modified to visually track the acidic fronts during the anodic reaction and the subsequent hydrolysis process. Two mathematical models were validated for both thick and ultrathin electrolytes. The acidification of thick electrolytes was extended some millimeters beyond the aluminum alloy surface, whereas the acidic front was localized next to the metallic joint using ultrathin electrolytes. The combination of both numerical and experimental results allows proving (and explaining why) that the acidification process is more aggressive under dilute than under concentrated electrolytes.  相似文献   
10.
This study evaluates environmental aggressiveness and atmospheric galvanic corrosivity categories in Chile (Classification of Industrial and Marine ATmospheres test) by installing bolts in electrical transmission towers in the Valparaiso region across four exposure sites: Playa Ancha, San Sebastián, Las Vegas, and San Felipe. Classifications of marine corrosion index (MCI), industrial corrosion index (ICI), and atmospheric corrosion index (ACI) used different galvanic couples: aluminum/steel for MCI, aluminum/copper for ICI, and aluminum/polyethylene for ACI. Corrosion indices varied by season (summer, autumn, winter, and spring), for which couples were exchanged every 3 months. Intraseason variation depended mainly on the meteorochemical variables of the zone, the Cl/SO2 ratio, and the presence of general and pitting corrosion in the aluminum. The results indicate that, regardless of environmental condition, the aluminum in Al/steel (MCI) and Al/copper (ICI) couples presented a higher corrosion rate than when not forming a galvanic couple (ACI). Moreover, under higher environmental chloride, these differences increase. The Playa Ancha station presented the highest ACI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号