首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   25篇
化学工业   4篇
轻工业   25篇
  2023年   4篇
  2022年   7篇
  2021年   6篇
  2020年   9篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有29条查询结果,搜索用时 19 毫秒
1.
Cellulose nanofibril (CNF) was used as the anionic component of two dual strengthening systems wherein polyamidopolyamine epichlorohydrin resin (PAE) or cationic starch (CS) was used as the cationic component. Their strengthening effects were investigated for low-basis-weight (30 g/m2) paper composed of a mixture of fully bleached softwood and hardwood pulp in a 4:1 mass ratio. Using the PAE/CNF or CS/CNF dual system, it was generally easier to achieve higher wet and dry tensile strengths of paper compared to the paper using the single PAE or CS system. For example, the paper using the PAE (0.4%)/CNF (0.3%) dual system exhibited 89% higher wet tensile strength than the paper using the single PAE (0.4%) system, and the paper using CS (1.3%)/CNF (0.3%) dual treatment showed 21% higher dry strength than that using the single CS (1.3%) system. However, the PAE/CNF system only showed small improvement in the dry strength of paper (11% higher than that of paper using the single PAE system), so did the CS/NFC system on wet strength improvement (only 17% higher than that of paper using the single CS system).  相似文献   
2.
纤维素纳米纤丝的制备和改性研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来,纤维素纳米纤丝(CNF)因其独特的物理化学性能受到了广泛关注。当前,CNF主要采用化学或酶处理等方法对纤维进行预处理,再通过机械法对预处理后的纤维进行机械处理而得到。随着人们环保意识的日渐增强,可回收的有机酸水解法,低共熔溶剂预处理结合机械法制备CNF等已成为CNF制备领域的研究热点。本文综述了CNF的制备和改性研究进展,总结了CNF在制备和改性过程中存在的问题。此外,讨论了不同制备方法的优缺点,并介绍了环保、高效的CNF制备方法及其最新的应用领域。  相似文献   
3.
本研究以未漂阔叶木浆为原料,在最适打浆度(70 °SR)下制备定量为60 g/m2的防油原纸,通过表面涂布TEMPO氧化纳米纤维素(TCNF)和壳聚糖(CTS)的方法,提高纸张的防油性能,探究不同涂布量对纸张防油等级、耐热油性能、防溶剂性能、纸张物理性能的影响。结果表明,双层涂布TCNF和CTS,涂布量分别为2.5和1.4 g/m2时,纸张达到最高防油等级(12级),且纸张具有较好的耐热油和防溶剂性能,透气度0.003 μm/(Pa·s),厚度为106 μm。  相似文献   
4.
本研究采用紫外光引发原位聚合法将丙烯酸-氯化胆碱合成的可聚合低共熔溶剂(polymerizable deep eutectic solvents,PDES)与纤维素纳米纤丝(cellulose nanofibril,CNF)气凝胶结合,并引入植酸以增强CNF与PDES之间的结合作用,制得含有丰富的共价键和非共价键(氢键)的离子导电弹性体,通过多种现代仪器分析测试其性能。结果表明,该离子导电弹性体在机械性能(应力和应变分别可达0.38 MPa和1378%)、热稳定性、抗冻性、离子电导性(离子电导率可达3.9 mS/m)和紫外屏蔽性方面具有明显优势,同时具有一定的抗疲劳性和弹性,且基于其组装的柔性应变传感器对人体运动表现出快速、稳定、可逆的信号响应。  相似文献   
5.
通过硫酸水解法及高强超声处理获得具有中空环状拓扑形貌的纤维素纳米晶体(RT-CNC),并采用真空抽滤法制备了纤维素纳米纤丝(CNF)/RT-CNC薄膜。结果表明,RT-RNC的环壁宽度约为3.5 nm,长度为10~50 nm,具有明显中空特性,其成膜过程中化学结构并未改变且保持纤维素Ⅰ结晶结构;CNF/RT-CNC薄膜的透气度为6.70 µm/(Pa·s),相较于CNF薄膜(2.50 µm/(Pa·s))提高了168%,且其热降解性能良好。  相似文献   
6.
利用两步对甲苯磺酸(p-TsOH)预处理选择性分离蔗渣中的半纤维素和木质素,并对p-TsOH预处理的剩余固体和商业级漂白蔗渣浆进行高压均质处理,获得2种纤维素纳米纤丝(LCNF和BCNF);然后对LCNF和BCNF进行真空抽滤及热压(T)处理,制得不同的纳米纤维素膜(LCNF膜、BCNF膜、T-LCNF膜和T-BCNF膜)。结果表明,p-TsOH预处理后残留的木质素有利于CNF的制备和分散,且可提高CNF滤水性能,使其成膜性大幅提升;此外,木质素的存在可显著提高CNF膜的疏水性,但对其力学性能有一定阻碍作用;通过热压作用可实现木质素的热熔和再分布,改变CNF膜的结构,使其拉伸强度大幅提高(166.7 MPa)的同时具有良好的疏水性。  相似文献   
7.
以高温自水解处理后的漂白硫酸盐针叶木浆为原料,采用亚氯酸钠(NaClO2)碱性氧化结合高压均质处理制备纤维素纳米纤丝(CNF)。探讨了氧化时间、NaClO2用量、氧化温度、浆浓对氧化后浆料Zeta电位和NaClO2消耗情况等的影响。结果表明,NaClO2氧化后浆料的Zeta电位显著降低,适宜的氧化条件为:氧化时间6 h,NaClO2用量8%,氧化温度95℃,浆浓10%,该氧化条件下浆料的Zeta电位为-37. 6 mV,较氧化前降低了43%。将上述氧化后的浆料进行高压均质处理,得到CNF产品,对其进行了形态尺寸、黏度、Zeta电位和热失重等分析。结果表明,最优氧化条件下得到的纸浆在80 MPa下均质70次,得到尺寸分布良好的CNF产品,其直径主要分布在20~60 nm之间,长径比大于100,CNF胶体的Zeta电位为-42. 3 mV,具有良好的稳定性。  相似文献   
8.
药物载体(Drug Delivery)通常由高分子纳米材料构成,可以控制药物释放速率,实现药物靶向运输功能。纳米纤维素具有良好的生物相容性、低毒性和可降解性等优良性能,可作为一种理想的新型药物载体材料。本文总结了近几年纤维素纳米晶体、纤维素纳米纤丝、细菌纤维素等作为药物载体的研究进展,并对其与药物分子的结合方式做了简单的介绍。  相似文献   
9.
杜海顺  李滨 《中国造纸》2021,40(11):68-78
纳米纤维素是一种绿色可再生的生物基纳米材料,由于其特殊的物化性质备受学术界和工业界的广泛关注。清洁高效的纳米纤维素制备方法的建立对实现其规模化生产和商业化应用尤为重要。本文主要综述了甲酸水解法清洁制备纳米纤维素的研究进展。与传统的无机强酸水解法相比,甲酸水解法制备纳米纤维素的主要优点包括:甲酸易回收和回用,可确保整个制备过程的清洁;甲酸在水解纤维素的同时,也与纤维素表面羟基发生反应,从而在纤维素表面引入酯基,同步实现纳米纤维素的制备与表面改性;通过反应条件的控制,可实现纳米纤维素形貌和性质的可控制备。此外,本文还概括介绍了甲酸水解法制备的纳米纤维素的功能性应用和展望。由于其特殊的表面性质,甲酸水解法制备的纳米纤维素在构建异质膜器件、Pickering乳液,以及橡胶和塑料复合材料加填等领域具有广阔的应用前景。  相似文献   
10.
采用氯化胆碱-草酸、氨基磺酸-尿素、氯化胆碱-柠檬酸分别经混合加热法制备了3种低共熔溶剂(DES),探讨了不同低共熔溶剂对豆渣纤维素预处理效果的影响。结果表明,3种DES均能够提纯豆渣纤维素,其中氯化胆碱-草酸体系对豆渣提纯纤维素效果最好,综纤维素含量为95.81%,且得到的α-纤维素含量高达92.60%,经高压均质后得到豆渣纤维素纳米纤丝(CNF),其直径为27~30 nm。氯化胆碱-柠檬酸体系和氨基磺酸-尿素体系分别预处理的豆渣经高压均质制备得到的纤维直径在0.1~0.5μm左右,未达到纳米级。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号