首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17655篇
  免费   1455篇
  国内免费   813篇
电工技术   608篇
综合类   1347篇
化学工业   7125篇
金属工艺   1547篇
机械仪表   511篇
建筑科学   1010篇
矿业工程   542篇
能源动力   359篇
轻工业   2292篇
水利工程   206篇
石油天然气   831篇
武器工业   213篇
无线电   661篇
一般工业技术   1566篇
冶金工业   602篇
原子能技术   126篇
自动化技术   377篇
  2024年   35篇
  2023年   217篇
  2022年   434篇
  2021年   566篇
  2020年   501篇
  2019年   346篇
  2018年   332篇
  2017年   524篇
  2016年   493篇
  2015年   495篇
  2014年   729篇
  2013年   876篇
  2012年   1188篇
  2011年   1308篇
  2010年   971篇
  2009年   1005篇
  2008年   893篇
  2007年   1227篇
  2006年   1158篇
  2005年   1036篇
  2004年   880篇
  2003年   734篇
  2002年   653篇
  2001年   588篇
  2000年   528篇
  1999年   418篇
  1998年   305篇
  1997年   276篇
  1996年   206篇
  1995年   204篇
  1994年   165篇
  1993年   111篇
  1992年   133篇
  1991年   78篇
  1990年   65篇
  1989年   50篇
  1988年   37篇
  1987年   29篇
  1986年   25篇
  1985年   19篇
  1984年   14篇
  1983年   18篇
  1982年   13篇
  1981年   12篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   7篇
  1976年   4篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 107 毫秒
1.
The germline carrier of the BRCA1 pathogenic mutation has been well proven to confer an increased risk of breast and ovarian cancer. Despite BRCA1 biallelic pathogenic mutations being extremely rare, they have been reported to be embryonically lethal or to cause Fanconi anemia (FA). Here we describe a patient who was a 48-year-old female identified with biallelic pathogenic mutations of the BRCA1 gene, with no or very subtle FA-features. She was diagnosed with ovarian cancer and breast cancer at the ages of 43 and 44 and had a strong family history of breast and gynecological cancers.  相似文献   
2.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
3.
Phosphate ester was investigated as a corrosion inhibitor for AISI 1018 carbon steel in carbon dioxide-saturated chloride solutions at different temperatures and pressures. The corrosion tests were realized by electrochemical techniques, weight loss measurements, bubble tests, and a high-pressure/high-temperature autoclave system. The corrosion tests demonstrated that the investigated molecule is an excellent corrosion inhibitor. The inhibiting effect is even bigger at high pressure and temperature than at atmospheric pressure and room temperature. The thermodynamic parameters were calculated and determined to obey the Langmuir isotherm. Polarization studies revealed that the evaluated inhibitor is a mixed type.  相似文献   
4.
《Ceramics International》2021,47(18):25863-25874
The inherent brittleness of bioceramics restricts their applications in load-bearing implant, although they possess good biocompatibility and bioactivity. ZnO, MgO and 58S bioglass (BG) were incorporated as additives to further improve the mechanical properties and biocompatibility of β-TCP and ZnO/MgO/BG-β-TCP composite scaffolds were manufactured via digital light processing (DLP). The composite with the best comprehensive performance was selected for degradation behavior and biocompatibility evaluation. The effects of different proportions of ZnO/MgO/BG on mechanical strength were analyzed and ZnO0·5/MgO1/BG2-β-TCP (ZMBT) samples exhibited superior mechanical strength. The improvement by 272% and 99% respectively was achieved in fracture toughness and compressive strength with the optimal recipe. The enhancement effect is realized through phase transition, alterative sliding actions and transgranular fracture to effectively prevent the load transfer combining the functions of bioglass and metal oxide. ZMBT scaffolds exhibited a more desirable pH environment and an enhanced ability of apatite-mineralization formation, meanwhile Si4+, Mg2+ and Zn2+ were gradually released from scaffolds. Furthermore, in vitro evaluation indicated that ZMBT scaffolds presented not only excellent cell attachment, proliferation, alkaline phosphatase (ALP) activity, but they up-regulated osteogenic gene (ALP, OCN, Runx2). These results suggest that the addition of ZnO/MgO/BG to DLP-printed β-TCP scaffolds offer a smart strategy to fabricate porous scaffolds with conspicuously better biological and physicochemical properties including compressive strength, bioactivity, osteogenesis and osteogenesis-related gene expression. Metal-oxide and BG synergistically enhanced the mechanical and biological properties which make the ZMBT scaffolds a strong candidate for bone repair applications.  相似文献   
5.
Flesh colour, which is affected by cultivars and browning, can largely impact consumer acceptance in fresh-cut apples. The study profiled phenolic metabolites from apple flesh of twenty-three cultivars by widely targeted metabolomics. Comparison among white- and yellow-fleshed cultivars showed fifteen phenolics, mainly quercetin 3-O-glucoside, hyperoside, hesperetin 5-O-glucoside and cymaroside, in white-fleshed apples were significantly higher than those in yellow-fleshed apples. It may indicate a metabolite basis of yellow and white flesh colour, and better potential nutrition in white-fleshed apples. In addition, ten phenolic metabolites including five cyanidin glycosides showed significant differences between the highest and the lowest browning groups, indicating them may be crucial in browning of fresh-cut apple. This work elucidates the differences of phenolic profiles among apple cultivars with different flesh colour and provides useful data to evaluate the suitability of apple for fresh-cut processing.  相似文献   
6.
7.
《Ceramics International》2022,48(22):33361-33372
Calcium phosphate cements (CPCs) have been increasingly used as synthetic bone substitutes for repair and regeneration of bone defects given their biocompatibility, resemblance to bone and malleability. Moreover, their use as local antibiotic delivery systems is of main interest against bone infections, avoiding the adverse effects of high dosages of conventional therapy. The main goals of this work were to improve the properties of a commercial CPC (Neocement®), turning it injectable, and to provide it with a new functionality as a drug delivery system able to ensure a sustained release of an antibiotic commonly used in orthopaedics (gentamicin sulphate, GS). For this, the influence of the liquid phase amount (%LP) and type of polymer contained in the formulation (chitosan, Chi, or hydroxypropyl methylcellulose, HPMC) on the basic properties of the material was evaluated. It was found that the formulation containing 42%LP + HPMC+1.87% wt GS was the best one. It showed suitable setting and mechanical properties, and injectability around 87% (much superior to the original Neocement®, with 31%). It ensured a sustained release of GS for at least 14 days, at antibacterial levels. The antibiotic released is highly effective against S. epidermidis, but also presents some antibacterial activity against S. aureus. The CPC revealed to be non-cytotoxic. Moreover, it demonstrated good flowability and connectivity with human cadaveric trabecular bone.  相似文献   
8.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
9.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
10.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号