首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18748篇
  免费   1792篇
  国内免费   667篇
电工技术   884篇
综合类   1116篇
化学工业   5503篇
金属工艺   866篇
机械仪表   614篇
建筑科学   700篇
矿业工程   381篇
能源动力   1950篇
轻工业   1669篇
水利工程   99篇
石油天然气   550篇
武器工业   75篇
无线电   1820篇
一般工业技术   3258篇
冶金工业   1131篇
原子能技术   279篇
自动化技术   312篇
  2024年   26篇
  2023年   484篇
  2022年   512篇
  2021年   688篇
  2020年   711篇
  2019年   558篇
  2018年   517篇
  2017年   656篇
  2016年   575篇
  2015年   618篇
  2014年   937篇
  2013年   1064篇
  2012年   1259篇
  2011年   1458篇
  2010年   1104篇
  2009年   1108篇
  2008年   951篇
  2007年   1250篇
  2006年   1068篇
  2005年   774篇
  2004年   753篇
  2003年   685篇
  2002年   604篇
  2001年   473篇
  2000年   391篇
  1999年   334篇
  1998年   259篇
  1997年   223篇
  1996年   192篇
  1995年   162篇
  1994年   147篇
  1993年   112篇
  1992年   108篇
  1991年   98篇
  1990年   55篇
  1989年   57篇
  1988年   54篇
  1987年   37篇
  1986年   34篇
  1985年   22篇
  1984年   14篇
  1983年   18篇
  1982年   13篇
  1981年   14篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
2.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
3.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
4.
The electromagnetic materials are featured by good magnetic permeability and dielectric constant characteristics, which are of significant importance in solving the pollution problem of electromagnetic. In this study, after the complete of the use of sol-gel method, argon gas was then introduced for calcination, and eventually a new type of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites was synthesized after the above mentioned procedures. The synthesized MWCNTs were able to be adsorbed on the surface of Ni0.5Zn0.5Nd0.04Fe1.96O4 and could form a good conductive work of 3D. Also, the effect of additional MWCNTs on microwave absorption properties of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites were also observed in this study. The results indicate that the additional MWCNTs function to significantly improve the microwave absorption property of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4. Through altering the amount of MWCNTs, the microwave attenuation performance and impedance matching coefficient of this electromagnetic materials can be effectively improved. The S2 sample presented a minimum reflection loss of ?35.05 dB when its thickness reached 1.6 mm, meanwhile, the effective absorption bandwidth achieved 4.55 GHz. The prepared composites perform well in microwave absorption, which can attribute to the reasonable ratio of composites as well as its interaction with both of the magnetic and dielectric components. This research paved the way for novel ideas to be put in the electromagnetic absorption materials with high-efficient.  相似文献   
5.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
6.
With the increase of industrialization and urbanization, humankind faces massive oil-based pollution due to tanker accidents, human error, and natural disasters. For this, hydrophobic sorbents are fabricated and their applications for the removal of oil from polluted water sources are investigated. These hydrophobic sorbents are prepared by the condensation reaction of poly(dimethylsiloxane) and tris[3-(trimethoxysilyl)propyl]isocyanurate cross-linker via bulk polymerization. The obtained sorbents exhibit high oil sorption capacity, fast absorption–desorption kinetics, and great reusability. Moreover, they can selectively absorb oil from the water surface, thus making them practical for water clean-up applications.  相似文献   
7.
8.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
9.
李路  庄鹏  谢晨波  王邦新  邢昆明 《红外与激光工程》2021,50(3):20200289-1-20200289-8
多普勒测风激光雷达通过分析系统回波信号的多普勒频移反演出风速,为提高风场探测精度,从稳频技术方面展开研究。在稳频过程中,分别采取措施消除激光频率的长期漂移和短期抖动。针对激光频率的长期漂移,设计并研制了种子激光器温控箱,通过水浴的控温方式大大减小了激光频率的长期漂移,将激光频率稳定在±50 MHz以内;针对激光频率的短期抖动,采用以碘分子吸收池为核心器件的稳频系统,通过半导体控温方式对碘分子吸收池精确控温,控温精度达0.03 ℃,提高了稳频精度,将激光频率进一步稳定在±8 MHz以内,满足±10 MHz以内的设计精度要求。通过搭建多普勒测风激光雷达系统,对发射激光稳频装置进行系统验证,连续4组风场观测结果表明:系统探测高度为17 km,绝大部分方差在4 m/s以下,满足测风激光雷达测量指标的要求。  相似文献   
10.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号