首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21528篇
  免费   1932篇
  国内免费   1587篇
电工技术   504篇
综合类   961篇
化学工业   4221篇
金属工艺   3295篇
机械仪表   2717篇
建筑科学   542篇
矿业工程   376篇
能源动力   729篇
轻工业   1424篇
水利工程   80篇
石油天然气   329篇
武器工业   164篇
无线电   3252篇
一般工业技术   4237篇
冶金工业   874篇
原子能技术   992篇
自动化技术   350篇
  2024年   27篇
  2023年   370篇
  2022年   510篇
  2021年   654篇
  2020年   685篇
  2019年   658篇
  2018年   616篇
  2017年   756篇
  2016年   744篇
  2015年   663篇
  2014年   948篇
  2013年   1303篇
  2012年   1261篇
  2011年   1639篇
  2010年   1175篇
  2009年   1220篇
  2008年   1200篇
  2007年   1334篇
  2006年   1293篇
  2005年   1092篇
  2004年   913篇
  2003年   791篇
  2002年   741篇
  2001年   529篇
  2000年   500篇
  1999年   447篇
  1998年   401篇
  1997年   378篇
  1996年   356篇
  1995年   275篇
  1994年   216篇
  1993年   185篇
  1992年   176篇
  1991年   170篇
  1990年   127篇
  1989年   131篇
  1988年   90篇
  1987年   77篇
  1986年   72篇
  1985年   69篇
  1984年   73篇
  1983年   57篇
  1982年   61篇
  1981年   22篇
  1980年   7篇
  1979年   7篇
  1977年   4篇
  1976年   6篇
  1975年   4篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
2.
Barium strontium alumino silicate (BSAS); (Ba0.6Sr0.4Al2Si2O8) was synthesized through solid state reaction between BaCO3, SrCO3, Al2O3 and SiO2 subjected to wet milling in isopropanol for about 24 h. The sequence of the solid state reaction was studied by subjecting to DG/DTG from room temperature to 1550 °C. The crystallographic phase evolution was confirmed by X-ray diffraction of the powders calcined in the range 1000 to 1300 °C for 2 h. The monoclinic celsian phase obtained at 1300 °C, pelletized through uniaxial pressing was sinterable to 67 to 78% density in the temperature range of 1300 to 1500 °C. The density improved to 75 to 94% after ball milling for 76 h, while ZrO2 addition further improved the density by 2%. The celcian phase of BSAS was dispersed in isopropyl alcohol, milled for about 24 h and spray coated on to plain SiC and mullite precoated SiC substrates. Sintering of coated samples and characterization for weight gain/loss, microstructure, scratch test prove that mullite + BSAS coating is more effective than single layer coating of BSAS on SiC substrates.  相似文献   
3.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
4.
The morphology and microstructure of splats impact the comprehensive capability of a new coating methodology called chelate flame spraying (CFS). This study addresses the quantitative characterization of the spread morphologies of flame sprayed Er2O3 splats directly deposited under different spray conditions on aluminum alloy substrates with a mirror finish. The influence of the in-flight particle temperature and velocity, carrier gas type, and carrier gas ratio on the solidification mechanism of molten droplets was investigated. Image analysis methods were employed to identify single splats from the morphology observed with field-emission scanning electron microscopy (FE-SEM). In addition, Er2O3 films were synthesized on an Al–Mg alloy (A5052) substrate using N2 or O2 as the carrier gas. When O2 was used as the carrier gas, 109-μm-thick films were deposited on the A5052 substrate. The cross-sectional porosity of the films was 3.8%. In contrast, films with 101-μm thickness were synthesized on the A5052 substrate when N2 was used as the carrier gas. The cross-sectional porosity of these films was 13.8%. The results showed that the carrier gas type (N2) and carrier gas ratio had a significant effect on the flattening behavior of the molten droplets. A spraying method combined with multidimensional modes is proposed to control the morphology of the splats.  相似文献   
5.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
6.
醌类化合物是PM2.5中的一类有害物质。本研究建立了纸喷雾离子化衍生质谱法快速测定PM2.5中的醌类污染物。通过衍生化反应在醌化合物中引入氨基,提高醌在纸喷雾中的离子化效率。随后对衍生化试剂种类、电压、喷雾溶剂种类等反应条件进行优化。在最优实验条件下,采用内标法定量分析1,4-苯醌、甲基对苯醌、1,4-萘醌和1,4-蒽醌,4种化合物均呈现较好的线性关系,其检出限分别为4.49、20.89、0.13、0.17 ng。利用该方法分析PM2.5实际样品中的萘醌和蒽醌,均获得了较好的定性和定量结果。  相似文献   
7.
Suspension plasma spraying (SPS) as a potential technique to prepare thermal barrier coatings (TBCs) has been attracting more and more attention. However, most reports on SPS were carried out in the atmosphere. Given the unique features of in-flight particles and plasma jets under low pressure, the resulting coatings are expected to be different from those under atmospheric pressure. In this article, yttria-stabilized zirconia (YSZ) thermal barrier coatings were prepared using suspension plasma spraying under different environmental pressures. The results show that as the environmental pressure decreased, the column-like structural coating turned into a vertical crack segmented structure, as well as a dramatic decrease in surface roughness. More nanoparticle agglomerates were formed in the coating under lower environmental pressures. The real porosity of the coating increased with a decrease in environmental pressure.  相似文献   
8.
In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges.  相似文献   
9.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
10.
The utilization of biological-, electrode- and conductive material-mediated direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea for enhancing methane productivity is widely reported in the literature. However, two cardinal questions are still controversial, i.e., which applied voltage value would be more recommended to enhance methane generation? and how the DIET over IIET has the upper hand in enhancing methane productivity? Herein, the influence of different applied voltages to promote biological-, conductive- and electrode-mediated DIET was investigated in MEC-AD reactors with conductive material. Polarized bioelectrodes induced electrode-mediated DIET (eDIET) and biological DIET (bDIET), in addition to cDIET (conductive material-mediated DIET), improved the methane yield to 315.40 mL/g CODr with an applied voltage of 0.9 V. Whereas further increase of applied voltage 1.2 V, lessened methane production efficiency due to high-voltage inhibition and adverse effect on DIET promotion. The anaerobic digestion coupled microbial electrolysis cells with optimal electric potential selectively promotes the DIET through polarized electrodes were confirmed through microbial analysis. As the contribution of DIET increased to 80%, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号