首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7580篇
  免费   1678篇
  国内免费   170篇
电工技术   171篇
综合类   355篇
化学工业   4158篇
金属工艺   97篇
机械仪表   163篇
建筑科学   110篇
矿业工程   29篇
能源动力   152篇
轻工业   1710篇
水利工程   16篇
石油天然气   100篇
武器工业   27篇
无线电   571篇
一般工业技术   1545篇
冶金工业   113篇
原子能技术   48篇
自动化技术   63篇
  2024年   35篇
  2023年   262篇
  2022年   213篇
  2021年   489篇
  2020年   421篇
  2019年   390篇
  2018年   365篇
  2017年   434篇
  2016年   436篇
  2015年   456篇
  2014年   532篇
  2013年   611篇
  2012年   626篇
  2011年   559篇
  2010年   425篇
  2009年   430篇
  2008年   329篇
  2007年   416篇
  2006年   334篇
  2005年   299篇
  2004年   204篇
  2003年   188篇
  2002年   171篇
  2001年   143篇
  2000年   114篇
  1999年   84篇
  1998年   58篇
  1997年   41篇
  1996年   56篇
  1995年   45篇
  1994年   48篇
  1993年   56篇
  1992年   43篇
  1991年   20篇
  1990年   20篇
  1989年   8篇
  1988年   7篇
  1987年   13篇
  1986年   7篇
  1985年   12篇
  1984年   4篇
  1983年   7篇
  1982年   14篇
  1979年   1篇
  1951年   2篇
排序方式: 共有9428条查询结果,搜索用时 15 毫秒
1.
The effects of cellulose microfibres (CMFs, Average size: 100 ± 5 μm) and cellulose nanofibres (CNFs, Average size: 60 ± 3 nm) on the properties of myofibrillar protein (MP) gels from duck breast meat were studied. The results demonstrated that CMFs and CNFs were mostly connected to MP by non-covalent bonds, the diffusion and cross-linking of MP molecules was promoted, and a denser and more complete gel network was formed. With the increases of CMFs and CNFs concentration (0–10%), the hardness was increased by 13.15% and 19.78% for CMFs10% and CNFs10% gels, respectively, and the elasticity was increased by 40% and 80%, respectively. At the same concentration (0–10%), the increase in gel hardness, viscoelasticity and immobilised water content was greater in the CNFs-MP group than in the CMFs-MP group. The CNFs-MP group had a tighter gel network, and CNFs had a better potential to improve the gelation performance of MP.  相似文献   
2.
《Ceramics International》2022,48(3):3495-3503
The photochromic phenomenon has been recently used as a fascinating technology in the development of highly efficient anti-counterfeiting materials with dual-mode security encoding of concurrent photochromism and fluorescence emission. Herein, we successfully developed lanthanide-doped aluminate nanoparticles (LAN)/polystyrene (PS) electrospun nanofibers as novel secure authentication films. Different ratios of lanthanide-doped aluminate nanoparticles were mixed with polystyrene-based copolymer solutions in N,N-dimethylformamide (DMF) and subjected to electrospinning to afford photochromic and fluorescent nanofibers. The generated electrospun nanofibers demonstrated a narrow diameter distribution, a smooth surface and well-defined morphological properties. The produced smart nanofibers were applied onto cellulose paper sheets to demonstrate a dual-mode secure strategy with a simple and rapid authentication. LAN was prepared in the nano-scale for better dispersion in PS, which guarantee the formation of transparent films. LAN was studied by transmission electron microscope (TEM) and X-ray diffraction (XRD). LAN displayed diameters of 5–12 nm. On the other hand, the fibrous diameters of LAN-PS samples were studied by scanning electron microscopy (SEM) to indicate diameters of 200–300 nm. The induced security marking was invisible (363 nm) under visible daylight turning into visible green (520 nm) color under ultraviolet irradiation demonstrating a bathochromic shift. Both excitation and emission displayed high intensities. The security marking was fully reversible under ultraviolet/visible irradiation cycles without fatigue. Those advantageous properties could be attributed to the high surface area of the chromogenic nanofibrous films to result in high absorption of light leading to strong optical dual-mode photo-responsiveness. The generated LAN-PS hybrid films showed improved hydrophobic properties with increasing LAN. The nanofibers showed transparency, stretchability and flexibility. The present strategy can be reported as an efficient technology to develop many anti-counterfeiting products toward a better market with social and economic values to avoid fake products.  相似文献   
3.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
4.
As the formaldehyde is one of the main indoor pollutants, the purpose of this study is to effectively remove indoor formaldehyde pollution by using environmentally friendly 3D printing ornaments. The wood 3D printing filaments cellulose/polylactic acid composite (Cellu/P) was selected as the starting material, and 3-aminopropyltriethoxysilane (APTES) was used for chemical modification to obtain a series of cellulose composite materials with amino groups. The modified composite materials (APTES@Cellu/P) were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, thermogravimetric analysis, and mechanical tests, and a formaldehyde removal experiment was performed. The feasibility of 3D printing was evaluated, and the process of 3D printing-functionalized customized ornaments was proposed, and then a school emblem was used for modeling, printing, and surface modification. Compared with the commercially traditional activated carbon, 3D printing-customized ornaments of APTES@Cellu/P material has a better formaldehyde removal effect, and can even avoid the secondary pollution that is common to the activated carbon.  相似文献   
5.
6.
The development of small molecules that can selectively target G-quadruplex (G4) DNAs has drawn considerable attention due to their unique physiological and pathological functions. However, only a few molecules have been found to selectively bind a particular G4 DNA structure. We have developed a fluorescence ligand Q1 , a molecular scaffold with a carbazole–pyridine core bridged by a phenylboronic acid side chain, that acts as a selective ascaris telomere antiparallel G4 DNA ASC20 ligand with about 18 nm blue-shifted and enhanced fluorescence intensity. Photophysical properties revealed that Q1 was sensitive to the microenvironment and gave the best selectivity to ASC20 with an equilibrium binding constant Ka=6.04×105 M−1. Time-resolved fluorescence studies also demonstrated that Q1 showed a longer fluorescence lifetime in the presence of ASC20. The binding characteristics of Q1 with ASC20 were shown in detail in a fluorescent intercalator displacement (FID) assay, a 2-Ap titration experiment and by molecular docking. Ligand Q1 could adopt an appropriate pose at terminal G-quartets of ASC20 through multiple interactions including π–π stacking between aromatic rings; this led to strong fluorescence enhancement. In addition, a co-staining image showed that Q1 is mainly distributed in the cytoplasm. Accordingly, this work provides insights for the development of ligands that selectively targeting a specific G4 DNA structure.  相似文献   
7.
Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5′ non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135–555) and RVFV non-coding RNAs, IGR and 5’ NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135–555, IGR, and 5’ NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5’ NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135–555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135–555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135–555 interacting with and unwinding RVFV non-coding regions.  相似文献   
8.
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.  相似文献   
9.
The role of starch aerogel (St-AG) and carboxymethyl cellulose (CMC) as biolgical active compounds, when they subjected for complexation with metal ions, is assessed in this work. The complexation is carried out with palladium(II) and copper(II) ions, in solid state. Different tools of analysis are carried out to characterize and elucidate the structures of these complexes, namely: elemental analysis, IR, thermal analysis, magnetic measurement and molar conductance techniques. All synthesized complexes are formed with 1:2 (metal:ligand) stoichiometry except the case of aerogel starch 1:1 (Pd:starch). All isolated complexes show a satisfactory cytotoxic effect results against colon cancer cell lines HCT11. Additionally, these complexes are screened for their antibacterial activities against two types of Gram positive and negative bacteria. Molecular docking investigation confirmed the cytotoxicity and antibacterial results. Proton–ligands association constants and their complex formation constants with some bivalent metal ions, using potentiometric method show that the complexes formed in solution have a stoichiometry of 1:1 [metal:ligand]. The effects of metal ion, ionic radius, electronegativity and nature of ligand on the formation constants are discussed. The formation constants of the complexes with 3D transition metals followed the order Mn2+ < Co2+ < Ni2+ < Cu2+ > Zn2+.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号