首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1199篇
  免费   85篇
  国内免费   39篇
电工技术   52篇
综合类   82篇
化学工业   352篇
金属工艺   13篇
机械仪表   58篇
建筑科学   19篇
矿业工程   34篇
能源动力   4篇
轻工业   40篇
水利工程   9篇
石油天然气   10篇
武器工业   4篇
无线电   205篇
一般工业技术   79篇
冶金工业   27篇
原子能技术   7篇
自动化技术   328篇
  2023年   21篇
  2022年   15篇
  2021年   62篇
  2020年   35篇
  2019年   17篇
  2018年   16篇
  2017年   34篇
  2016年   32篇
  2015年   37篇
  2014年   55篇
  2013年   57篇
  2012年   79篇
  2011年   97篇
  2010年   68篇
  2009年   49篇
  2008年   57篇
  2007年   70篇
  2006年   68篇
  2005年   60篇
  2004年   58篇
  2003年   54篇
  2002年   32篇
  2001年   25篇
  2000年   28篇
  1999年   31篇
  1998年   13篇
  1997年   2篇
  1996年   21篇
  1995年   10篇
  1994年   21篇
  1993年   8篇
  1992年   9篇
  1991年   10篇
  1990年   9篇
  1989年   11篇
  1988年   8篇
  1987年   8篇
  1986年   10篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
排序方式: 共有1323条查询结果,搜索用时 109 毫秒
1.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
2.
Pillar[n]arenes are new generation of supramolecular macrocyclic host, which exhibit excellent host−guest recognition properties. In the last decade, functional materials constructed from pillar[n]arenes have been attracted more and more attention and displayed outstanding characteristics, such as stimuli-responsiveness, self-healing and adaptability. In this mini-review, we provide a survey of the pillar[n]arene-based literatures covering light-harvesting systems, functional hydrogels, and solid materials. It is anticipated that more and more pillar[n]arenes-based advanced materials with multi-functional properties will appear in the near future.  相似文献   
3.
Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.  相似文献   
4.
Antithrombin (AT) is a natural anticoagulant that interacts with activated proteases of the coagulation system and with heparan sulfate proteoglycans (HSPG) on the surface of cells. The protein, which is synthesized in the liver, is also essential to confer the effects of therapeutic heparin. However, AT levels drop in systemic inflammatory diseases. The reason for this decline is consumption by the coagulation system but also by immunological processes. Aside from the primarily known anticoagulant effects, AT elicits distinct anti-inflammatory signaling responses. It binds to structures of the glycocalyx (syndecan-4) and further modulates the inflammatory response of endothelial cells and leukocytes by interacting with surface receptors. Additionally, AT exerts direct antimicrobial effects: depending on AT glycosylation it can bind to and perforate bacterial cell walls. Peptide fragments derived from proteolytic degradation of AT exert antibacterial properties. Despite these promising characteristics, therapeutic supplementation in inflammatory conditions has not proven to be effective in randomized control trials. Nevertheless, new insights provided by subgroup analyses and retrospective trials suggest that a recommendation be made to identify the patient population that would benefit most from AT substitution. Recent experiment findings place the role of various AT isoforms in the spotlight. This review provides an overview of new insights into a supposedly well-known molecule.  相似文献   
5.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.  相似文献   
6.
A strongly electron deficient and high triplet energy host for blue emitters was developed by decorating a dibenzofuran modified biphenyl backbone structure with multiple CN units. Two hosts, 6,6′-bis(6-cyanodibenzo[b,d]furan-4-yl)-[1,1′-biphenyl]-3,3′-dicarbonitrile(CNDBF1) and 2,2′-bis(6-cyanodibenzo[b,d]furan-4-yl)-[1,1′-biphenyl]-4,4′-dicarbonitrile(CNDBF2), were derived from the CN decoration strategy for application in blue organic light-emitting diodes requiring high triplet energy host. They showed high triplet energy above 2.79 eV and acted as the electron transport type host based on the strong electron deficiency. The mixture of the CNDBF1 and CNDBF2 hosts with a hole transport type 3,3′-di(9H-carbazol-9-yl)-1,1′-biphenyl host performed as the exciplex host of a blue phosphor and accomplished high external quantum efficiency of 22.7% in the blue phosphorescent organic light-emitting diodes.  相似文献   
7.
As a new technology for flat-panel displays and general lighting sources, solution-processed phosphorescent organic light-emitting diodes (PhOLEDs) unfurl a bright future, due to their merits of high quantum efficiency and easy fabrication. In recent years, great progress has been made in the device performance of solution-processed PhOLEDs, by developing both high-efficiency organometallic phosphors and novel solution-processable organic host materials. This review highlights recently developed organic host materials for triplet guest emitters in solution-processed PhOLEDs. The solution-processable host materials are classified into three types – small molecule, dendrimer, and polymer – according to their molecular architecture and molecular weight. The material design concept and the relationships between the molecular structure, material properties and device performance are the focus of this discussion. A future strategy for the development of high-performance solution-processed host materials is proposed.  相似文献   
8.
张满营 《玻璃》2014,41(9):27-30
论述了日用玻璃企业设备采购选型的基本原则,主机设备在运行过程中规范的操作、保养维护、大中修制度及措施、设备发生重大事故的应急处理办法等。  相似文献   
9.
A series of side-chain polystyrenes was developed as ambipolar hosts for solution processed organic light emitting diodes (OLEDs). The series was derived from the hole-only transport host molecule 1,3-Bis(N-carbazolyl)benzene (mCP). Electron transport ability was incorporated into the host polymers by the introduction of electron-poor heterocycles (pyridine or triazine) and extending delocalization of the lowest unoccupied molecular orbital (LUMO). The materials were tested in Ir-based green OLED devices with all organic layers processed from solution. Devices with the polymer combining triazine and carbazole on its side-chain exhibited a low luminance on-set voltage of 3.0 V and a current efficacy of 28.9 cd/A, which was more than 10 times higher than for devices with the mCP-based polymer (1.6 cd/A). The increase in performance is most likely due to an improvement of charge balance in the emissive layer, showing that our ambipolar polymers are good candidates for further wet-process optoelectronic applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号