首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32252篇
  免费   2208篇
  国内免费   866篇
电工技术   3184篇
技术理论   3篇
综合类   2354篇
化学工业   2972篇
金属工艺   2315篇
机械仪表   5400篇
建筑科学   1723篇
矿业工程   1841篇
能源动力   639篇
轻工业   1385篇
水利工程   500篇
石油天然气   1384篇
武器工业   902篇
无线电   2225篇
一般工业技术   3196篇
冶金工业   1751篇
原子能技术   179篇
自动化技术   3373篇
  2024年   73篇
  2023年   502篇
  2022年   709篇
  2021年   1119篇
  2020年   1013篇
  2019年   670篇
  2018年   543篇
  2017年   764篇
  2016年   856篇
  2015年   904篇
  2014年   2058篇
  2013年   2088篇
  2012年   2348篇
  2011年   2144篇
  2010年   1624篇
  2009年   1577篇
  2008年   1461篇
  2007年   2088篇
  2006年   1957篇
  2005年   1758篇
  2004年   1538篇
  2003年   1456篇
  2002年   1211篇
  2001年   1060篇
  2000年   913篇
  1999年   724篇
  1998年   483篇
  1997年   385篇
  1996年   333篇
  1995年   263篇
  1994年   184篇
  1993年   135篇
  1992年   85篇
  1991年   71篇
  1990年   49篇
  1989年   27篇
  1988年   25篇
  1987年   16篇
  1986年   23篇
  1985年   14篇
  1984年   21篇
  1983年   14篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1966年   2篇
  1957年   2篇
  1955年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ergonomics assessment in the automotive industry has, to date, focused mainly on physical ergonomics, for example, manual handling and posture. However, workload and, in particular, metabolic and cognitive workload, contributes to worker efficiency but has not received sufficient attention to yield practical guidance for industry. Successful workload assessment requires in-depth understanding of the context in which it will be conducted and of the various assessment techniques which will be applied, with consideration given to factors such as feasibility, resources, and skill of the assessor. These requirements are met with challenges within large and complex organizations and are often dealt with in a piecemeal and isolated matter (i.e., reactive workload assessment). The present paper explores these challenges within the automotive manufacturing industry and aims to develop a decision matrix to guide effective selection of workload assessment techniques focused on metabolic and cognitive demands. It also presents the requirements for time, equipment, and knowledge to implement these techniques as part of a participatory ergonomics approach. Early findings suggest that most assessment techniques reviewed require further development, for example, to establish the acceptance criteria for the specific workload scenario. However, five methods (Garg, Borg RPE, IPAQ, SWAT, and NASA-TLX) are ready to use in certain applications. Ultimately, the findings suggest that it is possible to implement a participatory workload evaluation program within large and complex manufacturing plants.  相似文献   
2.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
3.
针对模具设计与制造专业群实训教学开展过程中存在的问题,开展专业群虚拟仿真实训基地的建设,通过精密模具智能制造生产线仿真实训工厂、模具数字化设计及智能成型单元综合应用平台、开放共享课程资源等3个方面内容的建设,引入行业新技术、新工艺、新标准,确保虚拟仿真教学资源与学生职业能力培养相一致。基地建设依托智能制造新技术,以培养高层次复合型技术技能人才为主线,满足实训教学为核心,多方共享为目标,助力区域经济发展,服务"鲁班工坊"国际化建设,最终实现虚拟仿真实训基地区域示范性效果。  相似文献   
4.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
5.
Laser aided additive manufacturing(LAAM)was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder.The room temperature yield strength(σy),ultimate tensile strength(σUTS)and elongation(εUST)were 645 MPa,917 MPa and 27.0%respectively.The as-built sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation.These cellular structures together with oxide particle inclusions were deemed to strengthen the material.The other contributing components include dislocation strengthening,friction stress and grain bound-ary strengthening.The high εUTS was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity(TWIP and TRIP).Tensile tests performed at-40℃and-130℃demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively.However,almost no twinning was observed in the fractured sample tested at-40℃and-130℃.Instead,higher fraction of strain-induced hexagonal close-packed(HCP)ε phase transformation of 21.2%were observed for fractured sample tested at-40℃,compared with 6.3%in fractured room temperature sample.  相似文献   
6.
Direct writing is a unique means to align anisotropic particles for the fabrication of textured ceramics by templated grain growth (TGG). We show that alignment of tabular barium titanate (BT) template particles (20–40 μm width and 0.5–2 μm thickness) in a PIN-PMN-PT matrix powder (d50 = 280 nm) is significantly improved during direct writing using anisotropic nozzles at high printing rates. The particle orientation distribution in as-printed filaments, and the texture orientation distribution in sintered ceramic filaments are shown to directly correlate with COMSOL Multiphysics-predicted torque distributions for direct writing with aspect ratio 2, 3 and 5 oval nozzles. Electromechanical strain properties of the textured piezoelectric ceramics significantly improved relative to random ceramics when printed with anisotropic nozzles. Simulations of aspect ratio 20 nozzles and nozzles with interior baffles demonstrate significantly increased torque and near elimination of constant shear stress cores (i.e. plug flow).  相似文献   
7.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
8.
The production of ceramic matrix composites (CMC) based on C/C-SiC is still very cost-intensive and therefore only economical for a few applications. The fabrication of the preforms involves many costs that need to be reduced. In this work, the shaping of the CFRP-preforms is realized by thermoset injection molding, which enables large-scale production. The polymeric matrix used is a multi-component matrix consisting of novolak resin, curing agent and lubricant. Six millimeter chopped carbon fiber with a proportion of 50 wt.% were used as a reinforcement. These ingredients are processed by an industrial equipment for compounding and injection molding in order to manufacture a CFRP demonstrator representing a brake disc. Test specimens are cut out of the demonstrator in different directions in order to investigate influences of flow direction and weld lines on microstructural and mechanical properties. Afterward, the CFRP samples were converted to C/C-SiC composites by the liquid silicon infiltration process. The article addresses the flow behavior of the compound during the injection molding and the building of the weld lines in the demonstrator. In addition, results of the directional dependence of the microstructural and mechanical properties within the fabricated disc in the different production steps are presented.  相似文献   
9.
随着现代化进程的加快,电气设备接地装置的应用越来越广泛,从安全的角度考虑,其运行和维护受到了全社会的广泛关注,如何介绍应用当中存在的安全隐患成为当前关注的主要内容。本文系统概括的分析了电气设备接地装置的运行和维护情况,为其安全应用提供一定的参考。  相似文献   
10.
潘振 《金属热处理》2021,46(4):247-249
简要介绍了气体淬火介质及ECM气体淬火设备的特性,同时介绍了ECM气体分级淬火工艺的原理,并结合实际生产案例,论述了分级气淬工艺较普通气淬工艺的优越性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号