首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5240篇
  免费   315篇
  国内免费   126篇
电工技术   160篇
综合类   192篇
化学工业   2810篇
金属工艺   71篇
机械仪表   41篇
建筑科学   39篇
矿业工程   27篇
能源动力   874篇
轻工业   197篇
水利工程   2篇
石油天然气   967篇
武器工业   11篇
无线电   28篇
一般工业技术   199篇
冶金工业   24篇
原子能技术   4篇
自动化技术   35篇
  2024年   3篇
  2023年   52篇
  2022年   74篇
  2021年   90篇
  2020年   112篇
  2019年   136篇
  2018年   91篇
  2017年   115篇
  2016年   130篇
  2015年   122篇
  2014年   280篇
  2013年   295篇
  2012年   393篇
  2011年   396篇
  2010年   349篇
  2009年   347篇
  2008年   286篇
  2007年   357篇
  2006年   297篇
  2005年   301篇
  2004年   229篇
  2003年   188篇
  2002年   170篇
  2001年   154篇
  2000年   119篇
  1999年   98篇
  1998年   107篇
  1997年   61篇
  1996年   71篇
  1995年   85篇
  1994年   59篇
  1993年   36篇
  1992年   19篇
  1991年   14篇
  1990年   10篇
  1989年   9篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1951年   2篇
排序方式: 共有5681条查询结果,搜索用时 31 毫秒
1.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
2.
Methanol crossover is one of the main challenges for direct methanol fuel cells (DMFCs). Depositing a metal barrier on Nafion can reduce the crossover but usually faces the metal cracking issues. This study presents a new composite membrane in which an anodic aluminum oxide (AAO) substrate is impregnated with a Nafion solution and then coated with a layer of Au. The AAO/Nafion/Au composite membrane shows an ideal metal crack-free surface. Higher and more stable voltage has been achieved for the cell with the membrane, indicating an effectively suppressed methanol-crossover. Results reveal that there is a tradeoff between suppressing the methanol crossover and increasing the ion transmission. By optimizing the membrane, it can not only suppress the methanol crossover but also enhance the output performance of DMFCs. The current density and power density of the cells can be enhanced by 59% and 52.85%, respectively, compared to the cell with a commercial Nafion 117. Overall, this work provides a new approach to designing crack-free membranes for DMFCs.  相似文献   
3.
In this study, imidazolium functionalized poly(vinyl alcohol) (PVA) was synthesized by acetalization and direct quaternization reaction. Afterwards, composite anion exchange membranes based on imidazolium‐ and quaternary ammonium‐ functionalized PVA were used for direct methanol alkaline fuel cell applications. 1H NMR and Fourier transform infrared spectroscopy data indicated that imidazole functionalized PVA was successfully synthesized. Inductively coupled plasma mass spectrometry data demonstrated that the imidazolium structure was efficiently obtained by direct quaternization of the imidazole group. Composite anion exchange membranes were fabricated by application of the functionalized PVA solution on the surface of porous polycarbonate (PC) membranes. Fuel cell related properties of all prepared membranes were investigated systematically. The imidazolium functionalized composite membrane (PVA‐Im/PC) exhibited higher ionic conductivity (7.8 mS cm?1 at 30 °C) despite a lower water uptake and ion exchange capacity value compared to that of quaternary ammonium. In addition, PVA‐Im/PC showed the lowest methanol permeation rate and the highest membrane selectivity as well as high alkaline and oxidative stability. Dynamic mechanical analysis results reveal that both composite membranes were mechanically resistant up to 107 Pa at 140 °C. The superior performance of imidazolium functionalized PVA composite membrane compared to quaternary ammonium functionalized membrane makes it a promising candidate for direct methanol alkaline fuel cell applications. © 2020 Society of Chemical Industry  相似文献   
4.
5.
Fuel cell-grade hydrogen production has been studied via steam reforming of methanol (SRM) over a series of CuO/ZnO/Al2O3 nanocatalysts fabricated by the combustion method. The effect of sonication and urea/nitrate ratio on the characteristics and catalytic properties of the prepared catalysts has been investigated. The synthesized catalysts were characterized by x-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Particle Size Distribution (PSD), energy dispersive x-ray (EDX), Brunauer-Emmett-Teller (BET) and FTIR analyses XRD patterns showed positive influence of urea/nitrate ratio on CuO and ZnO crystallite sizes. The ultrasonic mixing of primary gel compared with conventional mixing led to lower crystallite size. FESEM images showed that the sample mixed by sonication with a urea/nitrate ratio of 1 had more homogeneous morphology with narrow particle size distribution. EDX results proved the presence of all metals on the surface of the nanocatalysts and better consistence between the gel and surface composition of elements in samples prepared by sonication. Catalytic performance showed that sonication during the mixing of primary gel dramatically increased the methanol conversion. It was also proved that increasing the amount of urea led to lower catalytic activity. The ultrasound-treated nanocatalyst with urea/nitrate?=?1 was the best sample in terms of activity and selectivity. It was stable in the SRM for 1200?min without considerable change in methanol conversion and product selectivity.  相似文献   
6.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
7.
8.
Recognizing the potential role of liquid hydrogen carriers in overcoming the inherent limitations in transporting and storing gaseous and liquid hydrogen, a complete production and use scenario is postulated and analyzed for perspective one-way and two-way carriers. The carriers, methanol, ammonia and toluene/MCH (methylcyclohexane), are produced at commercially viable scales in a central location, transmitted by rail or pipelines for 2000 miles, and decomposed near city gates to generate fuel-cell quality hydrogen for distribution to refueling stations. In terms of the levelized cost of H2 distributed to the stations, methanol is less expensive to produce ($1.22/kg-H2) than MCH ($1.35/kg-H2) or ammonia ($2.20/kg-H2). Levelized train transmission cost is smaller for methanol ($0.63/kg-H2) than ammonia ($1.29/kg-H2) or toluene/MCH system ($2.07/kg-H2). Levelized decomposition cost is smaller for ammonia ($0.30–1.06/kg-H2) than MCH ($0.54–1.22/kg-H2) or methanol ($0.43–1.12/kg-H2). Over the complete range of demand investigated, 10–350 tpd-H2, the levelized cost of H2 distributed to stations is aligned as methanol « ammonia ~ MCH. With pipelines at much larger scale, 6000 tpd-H2, the levelized cost decreases by ~1 $/kg-H2 for ammonia and MCH and much less for methanol. Methanol is a particularly attractive low-risk carrier in the transition phase with lower than 50-tpd H2 demand.  相似文献   
9.
二氧化碳(CO2)加氢制甲醇对于解决CO2排放和能源紧缺问题具有重要意义,催化剂的研究是这项技术的关键。铜基催化剂因高效廉价而被广泛研究,但目前的生产效率离实现工业化仍有距离。本文针对铜基催化剂,首先探讨了活性中心的存在形式,然后从活性组分负载量、载体、助剂、制备方法及条件、预处理条件这5个方面,分别分析其对催化剂的活性、选择性以及稳定性等的影响,以期为CO2高值转化为甲醇的铜基催化剂的制备和筛选提供参考。按照广泛接受的双位点机理可知,CO2转化率与铜表面积密切相关,甲醇选择性与强碱位点含量密切相关。因此,各方面因素通过影响催化剂比表面积、铜表面积、铜分散度、碱性位点、铜与载体的协同作用等物理化学参数,进而影响CO2转化率与甲醇选择性。  相似文献   
10.
Membranes commonly used in direct methanol fuel cell (DMFC) are expensive and show a great permeability to methanol which reduces fuel utilization and leads to mixed potential at the cathode. In this work, sulfonated styrene-ethylene-butylene-styrene (sSEBS) modified membranes with zirconia silica phosphate sol-gel phase are developed and studied in order to evaluate their potential use in DMFC applications. The synthesized hybrid membranes and sSEBS are subjected to an exhaustive physicochemical characterization by liquid uptake, ion exchange capacity, atomic force microscopy, X-ray photoelectron spectroscopy and dynamic mechanical and thermogravimetric analyses. Likewise, the potential use of the prepared membranes in DMFC is evaluated by means of electrochemical characterizations in single cell, determining the limiting methanol crossover current densities, proton conductivities and DMFC performances. The hybrid membranes show lower water and methanol uptakes, higher stiffness, water retention capability, upper power density and lower methanol crossover than sSEBS and Nafion 112.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号