首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   125篇
  国内免费   27篇
电工技术   8篇
综合类   35篇
化学工业   493篇
金属工艺   26篇
机械仪表   10篇
建筑科学   8篇
能源动力   57篇
轻工业   219篇
石油天然气   6篇
武器工业   5篇
无线电   48篇
一般工业技术   234篇
冶金工业   6篇
原子能技术   3篇
自动化技术   10篇
  2024年   4篇
  2023年   33篇
  2022年   59篇
  2021年   66篇
  2020年   77篇
  2019年   67篇
  2018年   35篇
  2017年   66篇
  2016年   45篇
  2015年   47篇
  2014年   61篇
  2013年   87篇
  2012年   98篇
  2011年   96篇
  2010年   55篇
  2009年   63篇
  2008年   54篇
  2007年   55篇
  2006年   43篇
  2005年   25篇
  2004年   12篇
  2003年   10篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
排序方式: 共有1168条查询结果,搜索用时 31 毫秒
1.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   
2.
Herein, this paper reports a facile method to prepare electrospun carbon nanofiber mats (ECNFMs) with high specific surface area and interconnected structure using polyacrylonitrile (PAN) as a precursor and novolac resin (NOC) as a polymer sacrificial pore-making agent. Without additional treatment, the prepared ECNFMs have a highly porous structure because NOC decomposes in a wider temperature range than most polymer activators. The NOC content in the PAN nanofibers shows important effects on porosity. The BET specific surface area of ECNFMs reaches a maximum of 1468 m2 g−1 when the precursor nanofibers contained 30 wt% NOC (ECNFM-3) after carbonization at 1000 °C. The supercapacitor device from ECNFM-3 electrode and all-solid-state electrolyte shows excellent cycling durability and high specific capacitance: ≈99.72% capacitance retention after 10 000 charge/discharge cycles and ≈320 mF cm−2 at 0.25 mA cm−2. Furthermore, it shows a large energy density of ≈11.1 μWh cm−2 under the power density of 500 mW m−2. Activation of carbon nanofibers simply by the addition of NOC into precursor nanofibers can offer a handy way to prepare ECNFMs for high-performance all-solid-state supercapacitors and other potential applications.  相似文献   
3.
针对抗生素类药物在耐药性菌株处理中应用的局限性,在聚(甲基丙烯酸甲酯-co-甲基丙烯酸)纺丝液中添加光敏剂竹红菌素,采用静电纺丝法制备具有光动力广谱抗菌功能的纳米纤维膜。借助扫描电子显微镜、静态接触角测试、傅里叶变换红外光谱仪和热重分析仪等分析添加竹红菌素前后纳米纤维的形貌、润湿性能、化学结构和热稳定性,并研究了添加竹红菌素的纳米纤维膜对金黄色葡萄球菌和大肠杆菌的抗菌能力。结果表明:添加竹红菌素后纳米纤维直径变粗,静态接触角增加约20°,润湿性能下降,热稳定性略有降低;纤维膜在可见光下具有良好的光动力氧化性能,在光照下对金黄色葡萄球菌和大肠杆菌的抑菌率分别达99.97%和54.41%。  相似文献   
4.
The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0?GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of ??44.9?dB and an effective frequency bandwidth of 3.0?GHz under a thickness of 3.0?mm can be reached by a sample calcined at 650?°C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs.  相似文献   
5.
常会  范文娟 《冶金分析》2019,39(9):46-53
以甲基丙烯酸十二氟庚酯(DFHMA)和甲基丙烯酸(MAA)为单体,通过溶液聚合法制备出共聚物DFHMA-co-MAA,将DFHMA-co-MAA与聚偏氟乙烯(PVDF)按一定质量共混,采用静电纺丝方法,制备出羧基含氟聚合物(PVDF-DM)纳米纤维膜,用以吸附溶液中Cu(II)。讨论了PVDF和DFHMA-co-MAA的质量配比对纤维微观形貌和对Cu(II)吸附性能的影响,得出当PVDF与DFHMA-co-MAA的质量比为1∶2时,纤维的微观直径较均一且吸附性能最佳,故实验采用该质量配比制备PVDF-DM。使用红外光谱对PVDF-DM进行表征,显示出PVDF-DM纤维膜中含有—OH和C=O等活性吸附基团。以PVDF-DM纳米纤维膜为吸附剂,探讨了吸附剂用量、吸附pH值和吸附时间对Cu(II)吸附性能的影响,并研究了吸附过程的动力学模型。结果表明,室温下,当吸附剂用量为0.03g,pH=5时,吸附60min达到吸附平衡,吸附率和吸附量分别为94.37%和62.91mg/g,PVDF-DM纳米纤维膜对Cu(II)的吸附过程同时满足拟一级动力学和拟二级动力学模型,说明该吸附过程包含了化学吸附和物理吸附。PVDF-DM纳米纤维膜循环使用5次后,吸附能力仅降低16.23%,说明PVDF-DM纳米纤维膜具有很好的再生使用能力。  相似文献   
6.
Self-assembled peptide nanofibers (NFs) obtained from β-sheet peptides conjugated with drugs, including antigenic peptides, have recently attracted significant attention. However, extensive studies on the interactions of β-sheet peptide NFs with model cell membranes have not been reported. In this study, we investigated the interactions between three types of NFs, composed of PEG-peptide conjugates with different ethylene glycol (EG) lengths (6-, 12- and 24-mer), and dipalmitoylphosphatidylcholine (DPPC) Langmuir membranes. When increasing the EG chain length, those interactions significantly decreased considering measurements in the presence of the NFs of: (i) changes in surface pressure of the DPPC Langmuir monolayers and (ii) surface pressure–area (π–A) compression isotherms of DPPC. Because the observed trend was similar to the EG length dependency with regard to cellular association and cytotoxicity of the NFs that was reported previously, the interaction of NFs with phospholipid membranes represented a crucial factor to determine the cellular association and toxicity of the NFs. In contrast to NFs, no changes were observed with varying EG chain length on the interaction of the building block peptide with the DPPC membrane. The results obtained herein can provide a design guideline on the formulation of β-sheet peptide NFs, which may broaden its potential.  相似文献   
7.
Novel molecularly imprinted polymer nanofibers (MIP‐NFs) were prepared for the adsorption of bisphenol A (BPA) in a water sample using the sol–gel process and the electrospinning technique. The effects of a number of synthesis parameters on the adsorption efficiency were investigated. The successful removal of BPA from MIP‐NFs was studied using UV–visible spectroscopy. The prepared MIP‐NFs were characterized by Fourier transform infrared, field emission SEM, TEM and energy dispersive X‐ray analysis. The results showed that the required molar ratio of 3‐aminopropyltriethoxysilane (APTES) to BPA was 15:1, which indicates a good performance in the rebinding test. Likewise, the molar ratio of APTES:acid:water was 1:2:9. The nylon 6 polymer solution, with a concentration of 12 wt%, showed a maximum adsorption capacity for BPA due to a decrease in the nanofiber diameter and an increase in the accessible sites. Furthermore, the maximum adsorption capacity of BPA was achieved at pH 7. Concerning the binding of BPA on MIP‐NFs, the experimental data matched well with the pseudo‐second‐order kinetics data and the Sips isotherm model. The saturated binding capacity for MIP‐NFs was predicted to be 115.1 mg g?1, which was more than twice as high as that for non‐imprinted polymer nanofibers (46.82 mg g?1). The results obtained in this study confirmed that the prepared MIP‐NFs showed considerable binding specificity for BPA in comparison with similar structural compounds such as phenol, naphthol and Naphthol AS, in aqueous solution. The binding capacity of MIP‐NFs remained almost constant after five cycles of reuse. The real sample analysis indicated that MIP‐NFs could be utilized as a useful sorbent material for the extraction of BPA from a water sample.  相似文献   
8.
9.
In this study, we demonstrate the fabrication of TiO2 photocatalytic electrode by sol-gel and electrospinning technique. The anatase TiO2 nanofiber is successfully formed after thermal annealing at 260°C. As-prepared TiO2 photocatalytic electrode contains surface contamination, which includes a polymer binder such as ethyl cellulose, carbon by carbonization of polyvinylpyrrolidone, and residue polyvinylpyrrolidone. To efficiently remove the surface contaminants from the TiO2 photocatalytic electrode, we employ an atmospheric-pressure O2 plasma jet and the exposure time is controlled by the scanning rate. As the results, photodegradation efficiency of methylene blue is significantly enhanced with a scanning rate in the range of 100-500 μm/s and was saturated with a scanning rate in the range of 10-100 μm/s.  相似文献   
10.
《Ceramics International》2021,47(20):28848-28858
The construction of photocatalyst with gradient band structure is guided by the principle of band gap engineering. Rational structural design is advanced and applied to construct a new-typed peculiarly structural and functional carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber modified by g-C3N4 nanosheets heterostructure photocatalyst (denoted as TB-JgHP). The flexible carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber with one side responding to ultraviolet light and the other capturing visible light is fabricated by conjugate electrospinning, and then g-C3N4 nanosheets are uniformly grown in-situ on the surface of the Janus nanofibers by using gas-solid reaction via gasification of urea. The optimized TB-JgHP possesses remarkable hydrogen evolution efficiency (17.48 mmol h−1 g−1) and methylene blue degradation rate (99.2%) under simulated sunlight illumination for 100 min, demonstrating prominent dual-functional characteristics. The enhanced photocatalytic performance benefits from the unique Janus structure as well as the synergistic effects among the triple heterostructures of TiO2 and Bi2WO6, g-C3N4 and TiO2, g-C3N4 and Bi2WO6. The formation of gradient band structure among heterostructures is more conducive to the multi-step separation of photo-induced electron-hole pairs and more effective absorption of light. Further, flexible self-standing carbon-based photocatalysts not only have outstanding electron transport performance, but also are easy to separate from solution with preeminent recyclable stability. Based on a series of characterization techniques, it is further proved that TB-JgHP has higher carrier separation efficiency than the counterpart contrast samples. The formation mechanism of TB-JgHP is proposed, and the construction technique is established. The design philosophy and construction technique presented in this work pave a new avenue for research and development of other heterostructure photocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号