首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9177篇
  免费   1233篇
  国内免费   367篇
电工技术   254篇
综合类   479篇
化学工业   3251篇
金属工艺   255篇
机械仪表   251篇
建筑科学   354篇
矿业工程   203篇
能源动力   218篇
轻工业   1663篇
水利工程   106篇
石油天然气   268篇
武器工业   51篇
无线电   1049篇
一般工业技术   1263篇
冶金工业   177篇
原子能技术   198篇
自动化技术   737篇
  2024年   28篇
  2023年   251篇
  2022年   147篇
  2021年   330篇
  2020年   365篇
  2019年   373篇
  2018年   356篇
  2017年   417篇
  2016年   381篇
  2015年   451篇
  2014年   491篇
  2013年   695篇
  2012年   668篇
  2011年   635篇
  2010年   519篇
  2009年   535篇
  2008年   490篇
  2007年   570篇
  2006年   465篇
  2005年   395篇
  2004年   355篇
  2003年   347篇
  2002年   275篇
  2001年   178篇
  2000年   171篇
  1999年   117篇
  1998年   111篇
  1997年   88篇
  1996年   84篇
  1995年   79篇
  1994年   77篇
  1993年   58篇
  1992年   52篇
  1991年   39篇
  1990年   32篇
  1989年   32篇
  1988年   25篇
  1987年   21篇
  1986年   15篇
  1985年   19篇
  1984年   19篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1975年   1篇
  1973年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.  相似文献   
2.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
3.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
4.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
5.
Hydrogel-based nanofibers or vice versa are a relatively new class of nanomaterials, in which hydrogels are structured in nanofibrous form. Structure and size of the material directly governs its functionality, therefore, in hydrogel science, the nanofibrous form of hydrogels enables its usage in targeted applications. Hydrogel nanofiber system combines the desirable properties of both hydrogel and nanofiber like flexibility, soft consistency, elasticity, and biocompatibility due to high water content, large surface area to volume ratio, low density, small pore size and interconnected pores, high stiffness, tensile strength, and surface functionality. Swelling behavior is a critical property of hydrogels that is significantly increased in hydrogel nanofibers due to their small size. Electrospinning is the most popular method to fabricate “hydrogel nanofibers,” while other processes like self-assembly, solution blowing and template synthesis also exist. Merging the characteristics of both hydrogels and nanofibers in one system allows applications in drug delivery, tissue engineering, actuation, wound dressing, photoluminescence, light-addressable potentiometric sensor (LAPS), waterproof breathable membranes, and enzymatic immobilization. Treatment of wastewater, detection, and adsorption of metal ions are also emerging applications. In this review paper, we intend to summarize in detail about electrospun “hydrogel nanofiber” in relation to its synthesis, properties, and applications.  相似文献   
6.
Acid–base transport is integral to many important interfacial reactions in various fields of chemistry, but its theoretical foundation is lacked. Herein, a common acid–base transport model is established owing to the success in deriving buffer transport equations. This model is applicable to most buffer systems by flexibly integrating the transport equations in terms of buffer components, and is verified through the model relationships of buffer transport limiting current by using hydrogen evolution reaction experiments. Based on model calculations, two diagram approaches are proposed to depict the dynamic pH response and aid buffer operation optimizations. The model and methods allow us to quantify the rate-limiting effect of acid–base transport on interfacial reactions and to precisely control the effect through medium regulations. Furthermore, the model has laid the foundation of dynamic pH effect on species transformation and process mechanism, which can be of wide interest in the chemistry encompassing interfacial reactions.  相似文献   
7.
5G系统将移动通信服务从移动电话、移动宽带和大规模机器通信扩展到新的应用领域,即所谓对通信服务有特殊要求的垂直领域。对使能未来工厂的5G能力进行了全面的分析总结,包括弹性网络架构、灵活频谱、超可靠低时延通信、时间敏感网络、安全和定位,而弹性网络架构又包括对网络切片、非公共网络、5G局域网和边缘计算的支持。希望从广度到深度,对相关的理论及技术应用做透彻、全面的梳理,对其挑战做清晰的总结,从而为相关研究和工程技术人员提供借鉴。  相似文献   
8.
The noninvasive sampling of dermal interstitial fluid (ISF) for the monitoring of clinical biomarkers is a greatly appealing area of research. The identification of molecular biomarkers in biological fluids has been accelerated with -omics analyses but remains limited in ISF because of its time-consuming and complex extraction process. Here, the generation of microneedle (MN) patches made of superabsorbent acrylate-based hydrogels for the rapid sampling of dermal ISF is described to explore its proteome. In depth, iterative optimization allows the identification of novel acrylate-based compositions with the required chemical, mechanical, and biocompatibility properties allowing proteomic analysis of the extracted ISF for the first time after sampling with swelling MNs. The generated MN arrays show no cytotoxic effect, successfully cross the stratum corneum, and can collect up to 6 µL of dermal ISF in 10 min in vivo. Proteomics lead to the detection of 176 clinically relevant biomarkers in the collected samples validating the use of ISF as a relevant bodily fluid for disease monitoring and diagnostic. Importantly, it is discovered that extraction fingerprint is strongly dependent on the MNs chemistry, and thus specific biomarkers could be selectively extracted by tuning the composition of the patch, making the system versatile and specific.  相似文献   
9.
Hydrogels have been widely used as mild biomaterials due to their bio‐affinity, high drug loading capability and controllable release profiles. However, hydrogel‐based carriers are greatly limited for the delivery of hydrophobic payloads due to the lack of hydrophobic binding sites. Herein, nano‐liposome micelles were embedded in semi‐interpenetrating poly[(N‐isopropylacrylamide)‐co‐chitosan] (PNIPAAm‐co‐CS) and poly[(N‐isopropylacrylamide)‐co‐(sodium alginate)] (PNIPAAm‐co‐SA) hydrogels which were responsive to both temperature and pH, thereby establishing tunable nanocomposite hydrogel delivery systems. Nano‐micelles formed via the self‐assembly of phospholipid could serve as the link between hydrophobic drug and hydrophilic hydrogel due to their special amphiphilic structure. The results of transmission and scanning electron microscopies and infrared spectroscopy showed that the porous hydrogels were successfully fabricated and the liposomes encapsulated with baicalein could be well contained in the network. In addition, the experimental results of response release in vitro revealed that the smart hydrogels showed different degree of sensitiveness under different pH and temperature stimuli. The results of the study demonstrate that combining PNIPAAm‐co‐SA and PNIPAAm‐co‐CS hydrogels with liposomes encapsulated with hydrophobic drugs is a feasible method for hydrophobic drug delivery and have potential application prospects in the medical field. © 2018 Society of Chemical Industry  相似文献   
10.
To obtain the great surface quality of Ti–6Al–4V and achieve high efficiency in the polishing process, the chemistry enhanced shear thickening polishing (C-STP) was proposed, and the polishing performance of different pH slurry was studied. The results show that the material removal rate gradually increases as the pH value decreases from 10 to 1, and the best surface quality is obtained at pH 2. The corrosion current density and potential were measured by potentiodynamic polarization under three typical pH values. It is confirmed that the most massive corrosion rate presents at pH 2, and the passive film is most susceptible to be produced at pH 10. The reaction resistance was measured by electrochemical impedance spectroscopy to clarify the polishing mechanism. Under acidic conditions, the chemical reaction product on the surface can be quickly removed by mechanical action of the abrasive. On the contrary, the passive film formed on the surface under the alkaline condition is difficult to be removed. The corrosion reaction products were determined by X-ray photoelectron, and the chemical reaction under acid-base environment was derived. MRR reached 107.3 nm/min under the selected process parameters, and the surface roughness (Sa) is reduced from 124 nm to 8.6 nm within 15 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号