首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32333篇
  免费   4122篇
  国内免费   2377篇
电工技术   4820篇
综合类   3189篇
化学工业   2641篇
金属工艺   1148篇
机械仪表   1601篇
建筑科学   2587篇
矿业工程   1003篇
能源动力   556篇
轻工业   781篇
水利工程   1156篇
石油天然气   2178篇
武器工业   520篇
无线电   7532篇
一般工业技术   1340篇
冶金工业   608篇
原子能技术   196篇
自动化技术   6976篇
  2024年   36篇
  2023年   321篇
  2022年   603篇
  2021年   800篇
  2020年   961篇
  2019年   756篇
  2018年   772篇
  2017年   1047篇
  2016年   1212篇
  2015年   1359篇
  2014年   2087篇
  2013年   1983篇
  2012年   2796篇
  2011年   2863篇
  2010年   2258篇
  2009年   2222篇
  2008年   2225篇
  2007年   2580篇
  2006年   2365篇
  2005年   1828篇
  2004年   1444篇
  2003年   1290篇
  2002年   935篇
  2001年   831篇
  2000年   634篇
  1999年   514篇
  1998年   384篇
  1997年   321篇
  1996年   291篇
  1995年   259篇
  1994年   204篇
  1993年   146篇
  1992年   124篇
  1991年   84篇
  1990年   68篇
  1989年   52篇
  1988年   42篇
  1987年   27篇
  1986年   20篇
  1985年   20篇
  1984年   16篇
  1983年   11篇
  1982年   7篇
  1981年   8篇
  1980年   8篇
  1979年   12篇
  1978年   4篇
  1977年   1篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
The development of efficient filters is an essential part of industrial machinery design, specifically to increase the lifespan of a machine. In the filter chamber design considered in this study, the magnetic material is placed along the horizontal surface of the filter chamber. The inside of the filter chamber is layered with a porous material to restrict the outflow of unwanted particles. This study aims to investigate the flow, pressure, and heat distribution in a dilating or contracting filter chamber with two outlets driven by injection through a permeable surface. The proposed model of the fluid dynamics within the filter chamber follows the conservation equations in the form of partial differential equations. The model equations are further reduced to a steady case through Lie's symmetry group of transformation. They are then solved using a multivariate spectral-based quasilinearization method on the Chebyshev–Gauss–Lobatto nodes. Insights and analyses of the thermophysical parameters that drive optimal outflow during the filtration process are provided through the graphs of the numerical solutions of the differential equations. We find, among other results, that expansion of the filter chamber leads to an overall decrease in internal pressure and an increase in heat distribution inside the filter chamber. The results also show that shrinking the filter chamber increases the internal momentum inside the filter, which leads to more outflow of filtrates.  相似文献   
2.
A large-scale high-precision scan stage is important equipment in the industrial productions of micro-fabrication such as flat panel display (FPD) lithography systems. Designing controllers for multi-input multi-output (MIMO) systems is time-consuming and needs experience because of the interaction between each axis and many controller tuning parameters. The aim of this study is to develop a peak filter design method based on frequency response data to reduce repetitive disturbance. This data-based approach does not use the model and only uses the frequency response data of the controlled system and the disturbance spectrum calculated from the scanning error data (Contribution 1). The peak filter is designed by convex optimization and satisfies robust stability conditions for six-degree-of-freedom systems (Contribution 2). The control performance of the designed peak filter is experimentally demonstrated with an industrial MIMO large-scale high-precision scan stage in reducing the scanning error of the main stroke of the translation along the x-axis (Contribution 3).  相似文献   
3.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
4.
《Soils and Foundations》2022,62(1):101089
In recent years, the mechanical properties of frozen soils under complex stress states have attracted significant attention; however, limited by the test apparatus, true triaxial tests on frozen soils have rarely been conducted. To study the strength and deformation properties of frozen sand under a true triaxial stress state, a novel frozen soil testing system, i.e., a true triaxial apparatus, was developed. The apparatus is mainly composed of a temperature control system, a servo host system, a hydraulic servo loading system, and a digital control system. Several true triaxial tests were conducted at a constant minor principal stress (σ3) and constant intermediate principal stress ratio (b) to study the effect of intermediate principal stress (σ2) on the mechanical properties of frozen sand. The test results showed that the stress–strain curve can be mainly divided into three stages, with evidence of strain hardening characteristics. The strength, elastic modulus, and friction angle increased with the increase in b from 0 to 0.6, but decreased when increasing b from 0.6 to 1, whereas the cohesion varied little with the variation in b. The deformation in the direction of σ2 changed from dilative to compressive and that in the direction of σ3 remained dilative throughout.  相似文献   
5.
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   
6.
Interface shear strength of geosynthetic clay liners (GCL) with the sand particles is predominantly influenced by the surface characteristics of the GCL, size and shape of the sand particles and their interaction mechanisms. This study brings out the quantitative effects of particle shape on the interaction mechanisms and shear strength of GCL-sand interfaces. Interface direct shear tests are conducted on GCL in contact with a natural sand and a manufactured sand of identical gradation, eliminating the particle size effects. Results showed that manufactured sand provides effective particle-fiber interlocking compared to river sand, due to the favorable shape of its grains. Further, the role of particle shape on the hydration of GCL is investigated through interface shear tests on GCL-sand interfaces at different water contents. Bentonite hydration is found to be less in tests with manufactured sand, leading to better interface shear strength. Grain shape parameters of sands, surface changes related to hydration and particle entrapment in GCL are quantified through image analysis on sands and tested GCL surfaces. It is observed that the manufactured sand provides higher interface shear strength and causes lesser hydration related damages to GCL, owing to its angular particles and low permeability.  相似文献   
7.
As a new type of material for civil engineering projects, the rubber and sand mixture is widely used in roadbed fillers, offering environmental benefits over traditional tyre disposal methods. This study uses a large-scale direct shear apparatus to examine the interface shear properties of the geogrid-reinforced rubber and sand mixture, considering different particle size ratios (r), rubber contents, and normal stresses. Based on indoor tests, direct shear models of the mixture with different values of r are established in PFC3D, revealing the meso-mechanical mechanism of the mixture in the direct shear process. The results show that when r is greater than 1, incorporating a certain amount of rubber particles can increase the shear strength of the mixture. The r values of 15.78, 7.63, and 3.98 correspond to an optimal rubber content of 30%, 10%, and 20%, respectively. When r is less than 1, mixing rubber particles can only reduce the shear strength of the mixture. When the rubber content is low, the smaller the value of r, the greater is the thickness of the shear band. Furthermore, the normal and tangential contact forces are greater. The fabric anisotropy evolution law of the mixture is consistent with the change in the contact force distribution.  相似文献   
8.
为改善南海东部惠州25-8油田大斜度井因泥岩水化造浆而引起的井壁失稳和钻井液增稠影响携砂的问题,在现有成熟PLUS/KCl钻井液的基础上开展复合盐阳离子聚合物钻井液研究,对钻井液配方进行了优化,评价了优化后钻井液的流变性、抑制性、封堵性和润滑性,并在惠州油田进行了现场应用。结果表明,复合盐阳离子聚合物钻井液配方中,无机盐类抑制剂KCl和NaCl的适宜加量为3%和12%、有机阳离子聚合物抑制剂PF-CPI适宜的加量为2.0%。该钻井液抑制性强,防膨率高达93.32%,钻屑回收率87.56%;受到钻屑侵污后的钻井液流变性能波动小,仍具有较低的黏度和合适的切力,有利于大斜度井携砂;封堵性和润滑性均优于PLUS/KCl钻井液体系。现场应用2口井,钻井液流变性良好,平均起下钻速度提高,钻井过程顺利,无复杂情况发生。复合盐阳离子聚合物钻井液可改善南海大斜度井起下钻阻卡的问题。  相似文献   
9.
在设计铁路路基的填料时,最常出现的是在进行铁路建设的地方就地取材。在以粉细砂为主的地区通常会选择用粉细砂作为铁路的填料,在所有的填料中,粉细砂填料属于C组类型填料,但是因为两个方面的原因需要对其进行一定的改良,一方面是因为粉细砂的粒径比较单一、级配不好,K30不能够满足规范标准的要求;另一方面则是因为大型机械不能够进行施工。本文通过掺入不同体积A、B组砾砂填料到粉细砂填料中进行试验,结果显示这种操作可以在不同程度上提高K30的值,从而在达到相关设计要求的同时解决施工方面的难题。  相似文献   
10.
为制备高过滤效率、低过滤阻力的空气过滤材料,将氧化石墨烯纳米颗粒(GO)掺杂到聚酰亚胺(PI)纺丝溶液中,制备氧化石墨烯/聚酰亚胺(GO/PI)复合纳米纤维过滤材料。通过观察其形貌、过滤性能来确定最优纺丝工艺参数。结果表明:当PI质量分数为30%,GO质量分数为1%,纺丝电压为25 kV,接收距离为20 cm时,复合纳米薄膜的纤维形貌较好,过滤性能优良。与PI纯组分纳米纤维过滤材料相比,GO/PI复合纳米纤维过滤材料的过滤性能更好,制得GO/PI复合纳米纤维膜的平均孔径为1.8μm,过滤效率为99.68%,过滤阻力仅为85.35 Pa。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号