首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   10篇
化学工业   2篇
建筑科学   1篇
矿业工程   23篇
水利工程   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2014年   5篇
  2010年   1篇
  2009年   2篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
针对华北型煤田煤层底板突水监测点覆盖不全、智能化水平不高等问题,以底板"下三带"理论为基础,提出集多频连续电法充水水源监测、"井-地-孔"联合微震采动底板破坏带监测以及监测大数据智能预警为一体的煤层底板突水三维监测与智能预警技术思路。其中多频连续电法监测系统以伪随机多频序列为人工场源,利用伪随机相关辨识技术提取强噪声背景中的弱信号,采用拟高斯-牛顿法对预处理数据进行三维电阻率反演,实现对煤层底板充水水源变化过程的自动化三维监测;"井-地-孔"联合微震监测系统主要通过研制带推靠的孔中传感器及回收装置,实现微震传感器"井-地-孔"三维立体布署,采用井下有线(IEEE1588)和地面无线(GPS)时钟同步方式解决地面与井下采集设备的时钟同步问题,建立起"井-地-孔"监测数据的实时传输网络,基于偏振分析联合反演的三分量定位算法,实现采动底板破坏深度时空精细定位与实时监测;智能预警系统利用时序大数据挖掘技术与计算机深度学习技术对电法、微震多元时序监测数据进行分析和处理,采用指标预警和模型预警方法对监测数据空间展布和预警级别以三视热力图形式输出,实时显示煤层底板各网格的预警等级,从而形成煤矿底板水害三维监测与智能预警技术体系。最后,以河北葛泉矿东井11916采煤工作面为应用对象,采用多频连续电法监测系统、"井-地-孔"联合微震监测系统,以及基于时空监测数据的智能预警系统对煤层底板岩溶水害进行三维监测与智能预警,为我国华北型煤田煤层底板水害监测预警提供了新的技术与装备支撑。  相似文献   
2.
针对华北型煤田煤层底板突水监测预警问题,以底板"下三带"理论为基础,开展了微震-电法耦合系统水害监测预警。在分析微震-电法耦合系统监测数据基础上,采用Flume设计数据迁移子系统,以流处理方式对监测源数据进行预处理,对关键目标数据进行采集、聚合和传输,实现了有效监测数据的实时迁移。此外,针对煤矿水害多源监测预警过程中数据规模大、数据实时处理要求高等特点,结合多源异构数据关联分析和时空属性数据分析处理需求,基于Spark和HDFS设计实现了具备TB级数据存储处理能力的煤矿水害多源监测大数据存储平台。该平台采用HDFS设计构建统一的多源时序大数据存储体系,通过MapReduce实现大数据并行处理,利用YARN实现资源的调度与管理,为海量数据存储提供支撑。平台采用Spark Streaming框架搭建了数据实时处理中心,通过流处理方式实现监测数据高速处理,并通过智能预警算法模块和远程服务接口为预警系统现场应用提供支撑。在智能预警技术方面,结合监测数据的时空属性特点,提出了基于深度学习时空序列预测方法——长短时记忆循环网络智能预警模型的底板突水模型预警技术。该预警技术基于LSTM方法,以"下三带"理论为基准对模型进行初始化,形成初始预警判据;将电法、微震监测数据作为输入变量,实际涌(突)水事件作为干预输出量,对智能预警模型进行半监督分类学习训练,形成动态化、参数最优的模型预警准则,将监测数据动态划分为4个预警等级,从而实现了水害智能动态预警和数据可视化表达。在冀中能源葛泉矿东井的实际应用中发现,该平台能够基本达到预期目标。  相似文献   
3.
为了精细刻画采场水文地质结构和跟踪充水要素的动态变化信息,提高矿井水害监测预警技术水平,笔者提出了三维充水结构可视化概念。三维充水结构由静态模型和动态可视化模型组成,静态模型是实体模型,动态可视化模型是在静态模型基础上嵌套充水水源和充水通道时空变化信息的可视化模型。静态模型依据地质、物探、水文地质等勘探数据,在三维开源几何内核Open CASCADE与DSI离散光滑插值算法、克里金插值算法相结合基础上构建而成的,用来展示采场尺度水文地质结构体的静态特征。动态可视化模型是根据工作面推采过程中水压、水温、应力-应变、视电阻率、破裂范围等动态信息,形成水压导升面、破坏深度包络面等动态衍生信息,在静态模型上嵌入上述动态衍生信息,实现充水要素(充水水源与充水通道)时空展示功能,该模型对数据更新响应时间少于10~20 s;以底板"下三带"理论为基础,提出依据"水压导升面"与"破坏深度包络面"是否叠置作为建立突水预警判据的技术思路。以葛泉矿东井11916工作面为例,通过采集地质、物探、水文地质、采掘工程信息,并融合传感器、网络连续电法、微震等充水要素动态监测信息,构建了采场三维充水结构可视化模型,将其应用于底板突水综合监测预警工程实践中,为11916工作面底板水害监测工程设计及智能化预警提供了新的技术平台。  相似文献   
4.
应用Comsol4.2a有限元多物理场耦合软件,"动态"剖分模型采掘空间,模拟计算了在采掘扰动、充水断层水压力影响下围岩应力及变形的变化情况,算例显示:采掘扰动过程中,在充水断层与岩体的水压影响下,采掘空间距断层大于205m时,断层与煤层接触面应力和位移量基本为原始状态;距断层间距小于105m时,接触面压应力和向下位移量急剧增加,应力变化梯度明显增大,存在断层突水的可能。  相似文献   
5.
深部破碎煤岩体受地应力和开采扰动常处于三向应力状态,其渗透特性是影响矿井突水灾害预防和瓦斯抽放的重要因素之一。为研究深部破碎煤体的渗透性能,采用自主研发的破碎岩石三轴渗流试验系统,并设计一套破碎煤体三轴渗流试验方案,进行三轴应力作用下破碎煤体渗流试验,得到破碎煤体渗透特性随围压及孔隙率的演化规律。试验结果表明:①三轴应力作用下破碎煤样渗流雷诺数最大值为47. 58,渗流速度与孔压梯度两者之间符合Forchheimer关系;②三轴应力作用下破碎煤样的孔隙率与围压的变化规律呈负相关,各级轴向位移下,两者服从对数函数关系;③随着有效应力的增大,各粒径下的破碎煤样孔隙率逐渐减小,破碎煤样孔隙率的理论计算值与试验结果较为吻合,表明文中给出的孔隙率计算方法可行;④各级轴向位移下,破碎煤样的渗透率随围压增大而减小,不同粒径的破碎煤样渗透率随围压的演化规律可用k=me~(nσ3)公式表示,颗粒粒径越大,破碎煤样的渗透率随围压的变化越敏感;⑤颗粒粒径及孔隙排列方式影响破碎煤样渗透性能,不同粒径破碎煤样随孔隙率的减小,渗透率整体减小,非Darcy流β因子呈增大趋势,其中渗透率的量级为10~(-14)~10~(-10) m~2,非Darcy流β因子的量级为10~7~10~(11)m~(-1)。所得研究结论有助于增强深部破碎煤岩体渗透特性演化规律的认识。  相似文献   
6.
蒙陕矿区采煤对松散含水层地下水资源影响的定量评价   总被引:1,自引:0,他引:1  
为定量评价蒙陕矿区采煤对松散含水层影响程度,提出了通过预测导水裂缝带发育高度和地面沉陷值、应用地下水数值模拟技术、数值化处理地面沉陷和边界化处理导水裂缝带的技术手段,构建三维地下水影响评价的计算机模型,并引用案例定量评价了井田开发过程中不同导水裂缝带范围内和地面沉陷影响下松散含水层地下水资源变化特征。案例显示,水源地大量取水对松散含水层地下水流场影响突出,地面沉陷影响程度极小;由于采煤形成导水裂缝带距松散含水层底板较远,导水裂缝带影响程度较小。  相似文献   
7.
为了研究含水层多孔介质参数非均质性,利用一系列连续的交叉孔水力试验获取含水层对于外界干扰的反应信息,应用序贯连续线性估计方法(Sequential Successive Linear Estimator)对多系列水头信息进行随机参数估计,即水力层析法。应用该方法对随机产生参数的一维含水层进行了渗透系数K和储水率Ss的估算,并对估计值和真实值进行了对比,其中使用单井数据计算就可使K值的平均相对误差控制在2.67%,证明了该方法的有效性。在对某地浸采铀厂区长、宽为150m×150m的含水层进行了实例研究,使用29口井孔进行层析试验,对于该二维水平分布含水层的非均质特征进行了刻画,其中K值为0.5-1.4m/d,Ss为0.00005/m—0.0002/m。该数据在后期的地下水污染溶质运移模拟中取得了很好的应用。作为研究地下水参数的新方法,水力层析法能够对三维分布的含水层特征进行高精度刻画,这种层析的概念和反演方法可广泛应用于环境和地球科学领域的研究。  相似文献   
8.
介绍了陕西北元化工集团股份有限公司VCM回收系统的工艺流程,针对VCM回收系统回收能力不足的问题进行了优化和改造.优化与改造后,VCM回收系统运行平稳,负荷运行能力得到了大幅度提高.  相似文献   
9.
利用数值方法模拟地下水流入水源井的时间,并根据时间定量划分地下水水源地保护区,是目前国内外可信度较高的保护区划分方法。计算过程中,采用同位素定年技术辅助判断水文地质参数的取值范围,以提高模拟精度。以山西省灵石县静升盆地内的供水站为例,采用MODFLOW和MODPATH软件,结合CFCs同位素定年数据,对其进行了保护区划分,较好地将数值模拟方法和同位素技术联合应用到水源地保护区划分中。  相似文献   
10.
受保护含水层水量损失的定量计算是"保水采煤"理论发展目前面临的瓶颈问题。利用覆岩破坏数值模拟方法,将陕北榆神矿区典型覆岩结构下煤层开采顶板水量损失过程划分成单一风化基岩失水和萨拉乌苏组、风化基岩复合失水模式;基于系统动力学理论,构建了2种水量损失模式动力系统模型,建立了实际疏放与无疏放状态水量损失过程之间的数学关系,求解了水量损失动力系统模型参数,确定了水量损失峰值及发生位置、水量损失动态平衡值及发生位置;通过开采扰动区水流数值模拟,计算了2种模式单位走向长度水量损失强度。结果表明:覆岩组合特征控制着煤层采动含水层动、静储量叠加释放过程,决定了工作面采动顶板水量损失模式; 2种水量损失模式相比,复合模式下水量损失峰值和动态平衡值均较大;钻孔疏放水显著削减了推采过程水量损失峰值强度,改变了水量损失方式和时机,但采动过程水量损失动态平衡值及顶板水资源损失总量并未发生变化;两种模式下工作面采动,水资源损失总量以及水资源损失强度中松散层和风化基岩水占比计算结果,揭示了古近系黏土隔水层对于萨拉乌苏组潜水保护的重要意义。研究结果为"保水采煤"理论在工作面尺度含水层水量损失及保护的定量计算提供了新思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号