首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  国内免费   4篇
  完全免费   40篇
  水利工程   321篇
  2018年   2篇
  2017年   15篇
  2016年   14篇
  2015年   13篇
  2014年   31篇
  2013年   25篇
  2012年   35篇
  2011年   30篇
  2010年   27篇
  2009年   25篇
  2008年   22篇
  2007年   19篇
  2006年   12篇
  2005年   17篇
  2004年   13篇
  2003年   4篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
排序方式: 共有321条查询结果,搜索用时 31 毫秒
1.
冬小麦田间墒情预报的BP神经网络模型   总被引:31,自引:2,他引:29  
土壤墒情预报是农田适时适量灌水的基础。田间土壤水分的变化受到外界气象因素及土壤特性、作物长势等的影响,关系比较复杂。本文利用北京市永乐店试验站冬小麦返青后的土壤水分试验资料,建立了土壤墒情预报的BP网络模型,模型中同时考虑了多个因素对土壤贮水量的影响。利用部分实测资料对网络进行训练,然后对2年不同灌水处理下的土壤贮水量进行预测,取得了较好的效果,表明BP神经网络用于墒情预报是可行的。  相似文献
2.
改进BP神经网络在地下水环境质量评价中的应用   总被引:17,自引:0,他引:17  
以LM算法和步长自适应法对BP神经网络进行改进,并将输入数据采用压缩系数法进行处理, 用改进后的BP神经网络对黄河流域某地区地下水环境质量进行评价,并和内梅罗指数法、灰色聚类法评价结果相比较,结果表明改进后的BP神经网络计算速度快、评价精度高、结果客观准确。  相似文献
3.
基于气象预报的参考作物蒸发蒸腾量的神经网络预测模型   总被引:16,自引:2,他引:14  
参考作物蒸发蒸腾量(ET0)是进行实时灌溉预报和农田水分管理的主要参数,BP神经网络能够较好地反映ET0与诸影响因素间复杂的非线性关系。本文将ET0看作时间序列,选取前3日ET0作为影响因子,以天气预报可测因子包括最高、最低和日平均温度、反映天气类型的阴晴指数、日序数和风力等级进行修正,建立了三层BP神经网络模型。选取江苏射阳站2003与2004年气象资料,应用Matlab神经网络工具箱,采用trainer算法进行模型训练与预测。结果证明,所建模型能够很好地反映诸多影响因子与ET0之间的关系,具有较高的模拟精度和较好的泛化能力。  相似文献
4.
基于BP神经网络的参照腾发量预测模型   总被引:14,自引:0,他引:14       下载免费PDF全文
本文在分析影响作物蒸发蒸腾量的气象因子的基础上,以不同的气象因子组合为输入向量,以参照腾发量为输出向量,构建了气象资料不足情况下三种计算参数腾发量的BP神经网络模型BPET1、BPET2和BPET3。利用宁夏引黄灌区2000~2003年的逐日气象资料对所建模型进行反复训练和预测,并把预测结果与传统的Penman-Monteith公式计算而得的同期作物ETO值相比较。其中,BPET1的预测值与ETO值的相关系数平方为0.9914;BPET2的预测值与ETO值的相关系数平方为0.9917;BPET3的预测值与ETO值的相关系数平方为0.9854。研究结果表明,本文构建的模型计算精度较高,方法简便可行,能满足实际生产需要。  相似文献
5.
基于神经网络的水轮机调节控制器   总被引:13,自引:6,他引:7  
对神经网络控制在水轮机调节中的应用做了理论上的分析,将基于BP神经网络的PID控制器应用于水轮机频率扰动和负荷扰动仿真实验中,结果表明其具有较好的动静态特性和较强的鲁棒性,为神经网络控制在水轮机调节中的应用打下良好的理论基础。  相似文献
6.
基于BP神经网络的贝叶斯概率水文预报模型   总被引:13,自引:4,他引:9  
李向阳  程春田  林剑艺 《水利学报》2006,37(3):0354-0359
本文在贝叶斯概率水文预报系统(BFS)框架之上,研究了双牌水库水文预报的不确定性,建立了流量先验分布及似然函数的BP神经网络模型,并通过Markov链Monte Carlo(MCMC)方法求解得到流量后验分布及其统计参数。通过对双牌水库历史洪水的研究结果表明,基于BP神经网络的BFS不仅显著提高了预报精度,而且为防洪决策提供了更多的信息,使得预报人员在决策中能考虑预报的不确定性,定量的估计各种决策的风险和后果。  相似文献
7.
基于神经网络的河道浅滩演变预测模型   总被引:11,自引:0,他引:11  
陈一梅  徐造林 《水利学报》2002,33(8):0068-0073
河道浅滩演变是一个复杂的非线性动力学过程, 作者借助神经网络处理非线性问题的优势, 在分析影响河道浅滩演变因素的基础上, 建立了预测河道浅淮演变的BP网络模型, 并对模型中的输入因子和样本的提取进行了探讨. 以闽江竹岐至侯官河段为实例,用“试控法”给出了BP网络模型的建模方案, 用正交设计原理选取相应的训练样本集, 利用该样本集对网络进行学习和训练, 并用训练好的BP网络模型预测浅滩上年内最小水深和年平均淤积厚度. 计算结果表明: 模型预测结果与实际值吻合良好. 这为河道浅滩演变预测研究提供了新方法.  相似文献
8.
基于MATLAB的神经网络在湖泊富营养化评价中的应用   总被引:10,自引:0,他引:10  
以MATLAB为工具,建立评价湖泊水体富营养化状态的BP神经网络模型,应用此模型对我国9个湖泊富营养化程度进行评价。将此评价结果与用分级评分法、模糊数学法、Fuzzy-Grey决策法的评价结果进行比较分析,得出较一致的结论。同时表明用MATLAB构建神经网络简洁、高效,具有更好的通用性和实用性。  相似文献
9.
基于BP神经网络的河道断面变形预测模型   总被引:10,自引:1,他引:9  
张小峰  谈广鸣  许全喜  石国钰 《水利学报》2002,33(11):0008-0013
采用“试错法”,以及通过建立网络训练学习过程与网络特征参数之间的反馈机制,对BP神经网络隐含层单元数和特征参数进行优化选择。在此基础上,以河段水沙条件、水流主流位置及河道边界条件为输入向量,河道断面高程或冲淤变形为输出向量,建立了基于BP神经网络的河道断面变形预测模型。经长江中游马家咀河段实测资料验证,模型能准确模拟和预测该河段各断面的冲淤变化过程。  相似文献
10.
改进的BP神经网络模型在大坝安全监测预报中的应用   总被引:9,自引:0,他引:9  
针对BP神经网络模型存在的缺陷进行了改进 ,并将改进的BP模型应用于大坝安全监测中效应量的预报。示例证明 ,改进的BP神经网络模型与常规BP神经网络模型及回归统计模型比较具有明显的优越性  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号