首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
水利工程   1篇
自动化技术   3篇
  2016年   1篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The current paper describes the development and testing of a procedure which can use widely available remotely sensed and ancillary data to assess large-scale patterns of forest productivity in Italy. To reach this objective a straightforward model (C-Fix) was applied which is based on the relationship between photosynthetically active radiation absorbed by plant canopies and relevant gross primary productivity (GPP). The original C-Fix methodology was improved by using more abundant ancillary information and more efficient techniques for NDVI data processing. In particular, two extraction methods were applied to NDVI data, derived from two sensors (NOAA-AVHRR and SPOT-VGT) to feed C-Fix. The accuracy of the model outputs was assessed through comparison with annual and monthly values of forest GPP derived from eight eddy covariance flux towers. The results obtained indicated the superiority of SPOT-VGT over NOAA-AVHRR data and a higher efficiency of the more advanced NDVI extraction method. Globally, the procedure was proved to be of easy and objective implementation and allowed the evaluation of mean productivity levels of existing forests on the national scale.  相似文献   
2.
基于SPOT-VGT数据的洞庭湖水体面积变化分析   总被引:1,自引:0,他引:1       下载免费PDF全文
监测洞庭湖水体变化、全面了解其变化规律和演化趋势对于湖区治理和防洪减灾具有重要的现实意义.本文基于SPOT-VGT NDVI数据,采用动态阈值法提取了洞庭湖1998-2010年间逐旬水体信息,并结合历史数据分析了水体面积变化特征.主要结论如下:①动态阈值方法在长时间序列、大数据量的遥感信息提取中具有显著优越性.②洞庭湖水体面积在年内呈现明显季节性变化;在年际呈缩减趋势(丰水期);1825-2010年水体缩减呈现四个阶段,当前处于新一轮的锐减期.③基于累积降雨量数据建立的水面积预测经验模型,精度较为理想.  相似文献   
3.
Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties - the sill and the mean length scale metric - provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.  相似文献   
4.
基于SPOT-VGT数据,由短波红外、红和蓝波段反射率计算了表征地表土壤湿度的可见光—短波红外干旱指数(VSDI),通过对1km空间分辨率的VSDI影像进行空间升尺度处理,采用多种函数建立了25km空间分辨率AMSR-E土壤湿度数据与VSDI指数的关系,发现二者关系最符合S型曲线模型,拟合残差在空间上呈现随机分布的特征。基于S曲线函数关系下的1km预测土壤湿度和残差值,对AMSR-E土壤湿度进行降尺度模拟,得到1km空间分辨率的土壤湿度。将原始AMSR-E土壤湿度和实测数据对降尺度结果分别比较验证后,表明基于该方法获得的土壤湿度模拟精度较高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号