首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
  国内免费   2篇
化学工业   2篇
建筑科学   23篇
矿业工程   1篇
轻工业   1篇
水利工程   2篇
石油天然气   15篇
自动化技术   14篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2015年   4篇
  2014年   9篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
西伯利亚地区是俄罗斯重要的矿产资源基地,油气资源是东西伯利亚-太平洋石油管道运输系统的主要供应原料,煤、铀、铜、镍、铂、钼、铅和锰等矿产的储量和开采量均居全俄第一位。煤矿资源远景区集中在克拉斯诺亚尔斯克边疆区南部、伊尔库茨克州西南部和科迈罗沃州;铀矿资源远景区分布在外贝加尔边疆区、布里亚特共和国等地;铜、镍、铂族金属远景区集中于诺里尔斯克矿区,铅锌资源远景区位于霍洛德宁矿床、奥泽尔矿床和戈列夫矿床等地,锰矿资源远景区集中于乌辛斯克矿床。本区矿产资源潜力巨大,开发程度较低,区域发展与我国振兴东北地区战略可有效对接,具有较强的互补性,我国企业应积极参与西伯利亚地区矿产资源开发,并加强在资源潜力区及边境地区基础设施建设方面的合作。  相似文献   
2.
Important environmental parameters in arctic periglacial landscapes (i.e. permafrost temperature, active-layer depth, soil moisture, precipitation, vegetation cover) will very likely change in a warming climate. The thawing of permafrost, especially, might cause massive landscape changes due to thermokarst and an enhanced release of greenhouse gasses from the large amounts of carbon stored in frozen deposits, resulting in positive climate-warming feedback. For the identification, mapping, and quantification of such changes on various scales up to the entire circum-Arctic, remote sensing and spatial data analysis are essential tools. In this study an extensive field-work dataset including spectral surface properties, vegetation, soils, and geomorphology was acquired in the largest Arctic delta formed by a single river, the Siberian Lena River Delta. A portable field spectrometer (ASD FieldSpec Pro FR®) was used for spectral surveys of terrain surfaces, and optical satellite data (Landsat Enhanced Thematic Mapper (ETM+), CHRIS-Proba) were used for the characterization, manual mapping, and automatic classification of typical periglacial land-cover units in the Lena Delta. Qualitative data from soils, vegetation, soil moisture, and relief units were correlated with the field-spectral data and catalogued for a wide variety of surface types. The wide range of micro- and meso-scale variations of periglacial surface features in the delta results in distinctive spectral characteristics for different land-cover units. The three main delta terraces could also be spectrally separated and characterized. The present dataset provides a basis for further spectral data acquisitions in the Lena Delta and for comparisons with periglacial surfaces from other regions.  相似文献   
3.
The boreal forest contains almost half the total carbon pool of world forest ecosystems, and so has a very significant role in global biogeochemical cycles. The flux of greenhouse gases in and out of these forests is influenced strongly by disturbances such as diseases, logging and predominantly fire. It is important to quantify these disturbances to enable the modelling of major greenhouse gases. However, because of the remoteness and vastness of the boreal forest, little data is available on the type, extent, frequency and severity of these disturbances in Siberia. For burnt areas, two of the more responsive wavelengths are the short wave infra-red (SWIR) and the near infra-red (NIR). These produce a vegetation index, the normalised difference SWIR (NDSWIR) capable of detecting retrospective disturbances. Here we combine the NDSWIR from MODIS imagery acquired in the summer of 2003 with thermal anomaly data from 1992 to 2003 to detect and date areas which burnt at some point between 1992 and 2003. The semi-automated method is called SWIR and Thermal ANomalies for Detecting Disturbances (STANDD) and is complemented by an Normalised Difference Vegetation Index (NDVI) differencing method using MODIS 2002 and 2003 imagery to ensure reliable detection of area burnt in the year of image acquisition (i.e. 2003). The area of this study covers approximately 3 million km2 stretching from Lake Baikal in the south to the Laptev Sea in the north, above the Arctic Circle. Landsat ETM+ images were used to validate the shape and areal extent of the burnt areas resulting in an 81% overall accuracy with a kappa coefficient of agreement of 0.63.  相似文献   
4.
在西西伯利亚俄罗斯油田开展了注凝析油开发稠油的研究,现场实验结果表明,注入25%的凝析油,可使其混合液粘度达到原高粘油粘度的1/60,以俄罗斯油田为例,探讨了注凝析油矿场试验的可行性,预测了凝析油的用量和可能产出的油量,并对原油外输提出了一系列更换工艺设备的要求。  相似文献   
5.
Siberia's boreal forests represent an economically and ecologically precious resource, a significant part of which is not monitored on a regular basis. Synthetic aperture radars (SARs), with their sensitivity to forest biomass, offer mapping capabilities that could provide valuable up-to-date information, for example about fire damage or logging activity. The European Commission SIBERIA project had the aim of mapping an area of approximately 1 million km2 in Siberia using SAR data from two satellite sources: the tandem mission of the European Remote Sensing Satellites ERS-1/2 and the Japanese Earth Resource Satellite JERS-1. Mosaics of ERS tandem interferometric coherence and JERS backscattering coefficient show the wealth of information contained in these data but they also show large differences in radar response between neighbouring images. To create one homogeneous forest map, adaptive methods which are able to account for brightness changes due to environmental effects were required. In this paper an adaptive empirical model to determine growing stock volume classes using the ERS tandem coherence and the JERS backscatter data is described. For growing stock volume classes up to 80 m3/ha, accuracies of over 80% are achieved for over a hundred ERS frames at a spatial resolution of 50 m.  相似文献   
6.
ERS-1/2 tandem coherence was reported to have high potential for the mapping of boreal forest stem volume (e.g. Santoro et al., 2002, 2007a; Wagner et al., 2003; Askne & Santoro, 2005). Large-scale application of the data for forest stem volume mapping, however, is hindered by the variability of coherence with meteorological and environmental acquisition conditions. The traditional way of stem volume retrieval is based on the training of models, relating coherence to stem volume, with the aid of forest inventory data which is generally available for a few small test sites but not for large areas. In this paper a new approach is presented that allows model training using the MODIS Vegetation Continuous Fields canopy cover product (Hansen et al., 2003) without further need for ground data. A comparison of the new approach with the traditional regression-based and ground-data dependent model training is presented in this paper for a multi-seasonal ERS-1/2 tandem dataset covering several well known Central Siberian forest sites. As a test scenario for large-area application, the approach was applied to a multi-seasonal ERS-1/2 tandem dataset of 223 ERS-1 and ERS-2 image pairs covering Northeast China (~ 1.5 million km2) to map four stem volume classes (0-20, 20-50, 50-80, and > 80 m3/ha).  相似文献   
7.
This study was part of an interdisciplinary research project on soil carbon and phytomass dynamics of boreal and arctic permafrost landscapes. The 45 ha study area was a catchment located in the forest tundra in northern Siberia, approximately 100 km north of the Arctic Circle.The objective of this study was to estimate aboveground carbon (AGC) and assess and model its spatial variability. We combined multi-spectral high resolution remote sensing imagery and sample based field inventory data by means of the k-nearest neighbor (k-NN) technique and linear regression.Field data was collected by stratified systematic sampling in August 2006 with a total sample size of n = 31 circular nested sample plots of 154 m2 for trees and shrubs and 1 m2 for ground vegetation. Destructive biomass samples were taken on a sub-sample for fresh weight and moisture content. Species-specific allometric biomass models were constructed to predict dry biomass from diameter at breast height (dbh) for trees and from elliptic projection areas for shrubs.Quickbird data (standard imagery product), acquired shortly before the field campaign and archived ASTER data (Level-1B product) of 2001 were geo-referenced, converted to calibrated radiances at sensor and used as carrier data. Spectral information of the pixels which were located in the inventory plots were extracted and analyzed as reference set. Stepwise multiple linear regression was applied to identify suitable predictors from the set of variables of the original satellite bands, vegetation indices and texture metrics. To produce thematic carbon maps, carbon values were predicted for all pixels of the investigated satellite scenes. For this prediction, we compared the kNN distance-weighted classifier and multiple linear regression with respect to their predictions.The estimated mean value of aboveground carbon from stratified sampling in the field is 15.3 t/ha (standard error SE = 1.50 t/ha, SE% = 9.8%). Zonal prediction from the k-NN method for the Quickbird image as carrier is 14.7 t/ha with a root mean square error RMSE = 6.42 t/ha, RMSEr = 44%) resulting from leave-one-out cross-validation. The k-NN-approach allows mapping and analysis of the spatial variability of AGC. The results show high spatial variability with AGC predictions ranging from 4.3 t/ha to 28.8 t/ha, reflecting the highly heterogeneous conditions in those permafrost-influenced landscapes. The means and totals of linear regression and k-NN predictions revealed only small differences but some regional distinctions were recognized in the maps.  相似文献   
8.
Estimating Siberian timber volume using MODIS and ICESat/GLAS   总被引:4,自引:0,他引:4  
Geosciences Laser Altimeter System (GLAS) space LiDAR data are used to attribute a MODerate resolution Imaging Spectrometer (MODIS) 500 m land cover classification of a 10° latitude by 12° longitude study area in south-central Siberia. Timber volume estimates are generated for 16 forest classes, i.e., four forest cover types × four canopy density classes, across this 811,414 km2 area and compared with a ground-based regional volume estimate. Two regional GLAS/MODIS timber volume products, one considering only those pulses falling on slopes ≤ 10° and one utilizing all GLAS pulses regardless of slope, are generated. Using a two-phase(GLAS-ground plot) sampling design, GLAS/MODIS volumes average 163.4 ± 11.8 m3/ha across all 16 forest classes based on GLAS pulses on slopes ≤ 10° and 171.9 ± 12.4 m3/ha considering GLAS shots on all slopes. The increase in regional GLAS volume per-hectare estimates as a function of increasing slope most likely illustrate the effects of vertical waveform expansion due to the convolution of topography with the forest canopy response. A comparable, independent, ground-based estimate is 146 m3/ha [Shepashenko, D., Shvidenko, A., and Nilsson, S. (1998). Phytomass (live biomass) and carbon of Siberian forests. Biomass and Bioenergy, 14, 21-31], a difference of 11.9% and 17.7% for GLAS shots on slopes ≤ 10° and all GLAS shots regardless of slope, respectively. A ground-based estimate of total volume for the entire study area, 7.46 × 109 m3, is derived using Shepashenko et al.'s per-hectare volume estimate in conjunction with forest area derived from a 1990 forest map [Grasia, M.G. (ed.). (1990). Forest Map of USSR. Soyuzgiproleskhoz, Moscow, RU. Scale: 1:2,500,000]. The comparable GLAS/MODIS estimate is 7.38 × 109 m3, a difference of less than 1.1%. Results indicate that GLAS data can be used to attribute digital land cover maps to estimate forest resources over subcontinental areas encompassing hundreds of thousands of square kilometers.  相似文献   
9.
俄罗斯萨哈(雅库特)共和国属于典型高纬度寒区,是世界地下水溢流积冰问题最严重的地区之一,布鲁斯位于萨哈共和国汉加拉斯基区东部,是地下水溢流积冰现象的代表性区域。在实地勘测的基础上,采用Geo-studio软件结合气象数据对不同时期山谷边坡的温度场、渗流场的分布特征进行耦合模拟并分析其对地下水溢流积冰发育的影响。结果表明:(1)研究区长达192 d稳定的负温环境,使得边坡内部过水通道温度环境维持地下水接近冻结-未冻结的临界状态,有效地提高了其溢流到地表(或积冰体表面)后的冻结效率。坡体外部最低可达-43℃的超低温度,也为其冻结提供了足够的冷量。(2)寒武纪碳酸盐岩的强风化带是坡体内为溢流积冰供水的主要过水通道,其地下水渗流速度最高可达1.23 m/d,较其他岩层水流速率(一般不超过0.05 m/d)明显加快。(3)同时充足的地下水补给为地下水溢流积冰的形成提供物质条件,形成较高的地下水水位为地下水渗流提供驱动力。本研究可为中国及其他国家和地区的地下水溢流积冰相关研究提供科学参考。  相似文献   
10.
The article considers hydrological hazards and risks, the dynamics of which are connected to climate change and anthropogenic influence on water bodies and their watershed areas. The hydrological consequences of climate change in Western Siberia are characterized by a high level of spatial and temporal heterogeneity and wide diversity. The authors determine the most dangerous hydrological phenomena with potentially high-risk levels, the causes of such dynamics and characteristic spreading areas. They reach the conclusion that both likelihood and scale of negative effects of certain hydrological phenomena and processes increase with the development of climate change and increase of anthropogenic influences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号