首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   15篇
  国内免费   7篇
电工技术   6篇
综合类   16篇
化学工业   289篇
金属工艺   14篇
机械仪表   76篇
建筑科学   77篇
矿业工程   9篇
能源动力   168篇
轻工业   7篇
水利工程   18篇
石油天然气   8篇
武器工业   3篇
无线电   14篇
一般工业技术   48篇
冶金工业   147篇
原子能技术   29篇
自动化技术   59篇
  2023年   8篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   12篇
  2018年   9篇
  2017年   14篇
  2016年   21篇
  2015年   11篇
  2014年   47篇
  2013年   53篇
  2012年   28篇
  2011年   95篇
  2010年   57篇
  2009年   73篇
  2008年   79篇
  2007年   71篇
  2006年   64篇
  2005年   54篇
  2004年   58篇
  2003年   38篇
  2002年   37篇
  2001年   10篇
  2000年   10篇
  1999年   16篇
  1998年   15篇
  1997年   15篇
  1996年   10篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
排序方式: 共有988条查询结果,搜索用时 15 毫秒
1.
2.
The purpose of this study is to examine the explosion characteristics of non-uniform hydrogen-air mixtures with turbulent mixing. In the experiment, hydrogen is first filled into a 20 L spherical chamber to a desired initial pressure, then air is introduced into the same chamber through a fast response solenoid valve, by adjusting the ignition delay time (td), i.e., the time period between the end of air injection and the action of ignition, the turbulent mixing strengthen (or called uniformity of hydrogen-air mixture) is then changed. The experimental results show that the explosions are overall enhanced as td decreases, which indicates that turbulence plays a leading role in enhancing the explosion behaviors. In addition, it is found that the effect of turbulence on pmax is more prominent in end-wall ignition than that in center ignition. This is because the heat loss per unit time is higher in end-wall ignition due to the flame front continuously contacts with inner wall of the chamber throughout the explosion process, although the explosion duration time te for both ignition cases is reduced when turbulence is introduced, heat loss reduction for end-wall ignition is generally larger than that in center ignition. Lately, a systematical analysis of the turbulent effect associated with various equivalence ratios on the explosion characteristics is conducted in end-wall ignition. Those experimental results illustrate that the turbulence-enhancing influence is more noticeable when hydrogen-air mixtures move toward the lower explosion limit. However, no significant influence of turbulence on explosion process can be found as combustible mixtures tend to the fuel-rich side. This is mainly because that when hydrogen-air mixtures tend to fuel-rich side, τe reduction caused by the presence of turbulence is relatively weak as compared with that under quiescent condition, resulting in heat loss during explosion process changes slightly, hence there is no significant impact on explosion parameters.  相似文献   
3.
Natural habitats are created and developed through pool-riffle sequences in rivers, while vegetation cover could play a critical role in the sediment transfer and its quantity and quality. In this study, the effect of vegetation cover on the flow structure in a pool-riffle sequence is investigated in a laboratory flume under bed formation to compare with non-vegetated cover. In this context, instantaneous point velocities were measured by ADV to determine averaged velocity, shear velocity, root mean square velocity, friction factor, Reynolds shear stress and turbulence intensities. Results showed that the vegetation cover increases the thickness of the wall law. Meanwhile, the length of the flow separation zone in the vegetated bedform is more than in the non-vegetated bedform. Variation in roughness coefficients may cause a new boundary layer in which local flow velocities decrease. In both cases (vegetated and non-vegetated bedforms), the momentum is mostly transferred by ejection and sweep phenomena between flow and bedform.  相似文献   
4.
Numerical evaluation of wind effects on a tall steel building by CFD   总被引:4,自引:0,他引:4  
A comprehensive numerical study of wind effects on the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building is presented in this paper. The techniques of Computational Fluid Dynamics (CFD), such as Large Eddy Simulation (LES), Reynolds Averaged Navier-Stokes Equations (RANS) Model etc., were adopted in this study to predict wind loads on and wind flows around the building. The main objective of this study is to explore an effective and reliable approach for evaluation of wind effects on tall buildings by CFD techniques. The computed results were compared with extensive experimental data which were obtained at seven wind tunnels. The reasons to cause the discrepancies of the numerical predictions and experimental results were identified and discussed. It was found through the comparison that the LES with a dynamic subgrid-scale (SGS) model can give satisfactory predictions for mean and dynamic wind loads on the tall building, while the RANS model with modifications can yield encouraging results in most cases and has the advantage of providing rapid solutions. Furthermore, it was observed that typical features of the flow fields around such a surface-mounted bluff body standing in atmospheric boundary layers can be captured numerically. It was found that the velocity profile of the approaching wind flow mainly influences the mean pressure coefficients on the building and the incident turbulence intensity profile has a significant effect on the fluctuating wind forces. Therefore, it is necessary to correctly simulate both the incident wind velocity profile and turbulence intensity profile in CFD computations to accurately predict wind effects on tall buildings. The recommended CFD techniques and associated numerical treatments provide an effective way for designers to assess wind effects on a tall building and the need for a detailed wind tunnel test.  相似文献   
5.
Wind tunnel experiments have been conducted on a cylindrical vortex embedded in a low turbulence stationary horizontal stream, running through a two-dimensional narrow vertical woven fence located on the wind tunnel floor.The vortex was continuously generated upwind of the fence by means of a vortex tube located well below the fence top level, with its axis aligned with the mean velocity of the external stream. The fence installed along the entire width of the tunnel had a porosity of 70%. Visualization experiments showed that approaching the fence the vortex moves away from the mean wind direction of the adjacent stream along a rising curved trajectory while the direction of the surrounding mean flow remained nearly horizontal. The results suggest that this deviation could be promoted by the vortex slanting velocity field relative to the fence, which “sees” a fence with much lower optical porosity than the fence perpendicular velocity of the nearby mean flow.The fence top shear layer flow, which dominates the downwind evolution of the mixing layer, appears to be highly sensitive to the presence of this type of vortex. The most energetic changes in the flow due to the presence of the vortex occurred in the mixing layer region. Windbreaks are usually designed in terms of mean velocity, turbulence intensity, geometric dimensions, and porosity. The results presented in this paper suggest that the sheltering ability of a porous fence depend also on the particular flow pattern of the oncoming turbulent structures embedded in the incident wind. The results show the importance for a particular wind sheltering application in knowing a priori at least some aspects of the flow pattern of the most representative turbulent structures of the local wind.  相似文献   
6.
We demonstrate the use of high frequency data (HFD) to reproduce the power spectrum shown by Van der Hoven in 1957. His work represents the basis of wind energy standards such as averaging and variability in the frequency domain. Our results unveil discrepancies with Van der Hoven's approach, which can be related to constraints in the computing capabilities in the 1950's. We show a major eddy-energy peak at a period of 2 days and a smaller eddy-energy peak contribution at frequencies higher than the region known as the spectrum gap. The variance calculated by the area under the curve indicated that the spectral energy is mainly due to the Power Spectral Density (PSD) values located in the microscale region. We calculated the economic value of this energy based on the turbulence kinetic energy of the wind data set. We also conclude that, given the results of the present study, HFD analysis in the frequency domain uncover eddy energy peaks that determine energy fluctuations in the short and long terms. This information is lost every time data are erased from current monitoring systems.  相似文献   
7.
8.
Flame front behavior during hydrogen/air deflagration in initially quiescent mixtures in cylindrical envelopes was experimentally studied using ionization gauges and infrared photography. Hydrogen/air mixtures with hydrogen content from 12% to 30% were filled in the polyethylene envelope of 4.5 m3 and ignited with exploding wire of 5 J energy. The dependences of the flame front position on time were obtained. Dynamics of the flame front was analyzed on harmonic instabilities development. The mechanisms for the creation of turbulence are discussed. Flame front acceleration is analyzed using Kolmogorov law.  相似文献   
9.
This paper presents the gas distribution analysis by injecting air fountain into the containment and simulations with the HYDRAGON code. Turbulence models of standard k-ε(SKE), re-normalization group k-ε(RNG) and a realizable k-ε(RLZ) are used to assess the effects on the gas distribution analysis during a severe accident in a nuclear power plant. By comparing with experimental data,the simulation results of the RNG and SKE turbulence models agree well with the experimental data on the prediction of dimensionless density distributions. The results illustrate that the turbulence model choice had a small effect on the simulation results, particularly the region near to the air fountain source.  相似文献   
10.
This paper describes the measurements and the post-processing procedure adopted for the determination of the turbulence intensity in a low pressure turbine (LPT) by means of a single sensor fast response aerodynamic pressure probe. The rig was designed in cooperation with MTU Aero Engines and considerable efforts were put into the adjustment of all relevant model parameters. Blade count ratio, airfoil aspect ratio, reduced massflow, reduced speed, inlet turbulence intensity and Reynolds numbers were chosen to reproduce the full scale LP turbine. Measurements were performed adopting a phase-locked acquisition technique in order to provide the time resolved flow field downstream of the turbine rotor. The total pressure random fluctuations are obtained by selectively filtering, in the frequency domain, the deterministic unsteadiness due to the rotor blades and coherent structures. The turbulence intensity is derived from the inverse Fourier transform and the correlations between total pressure and velocity fluctuations. The determination of the turbulence intensity allows the discussion of the interaction processes between the stator and rotor for engine-representative operating conditions of the turbine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号