首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61853篇
  免费   5341篇
  国内免费   3464篇
电工技术   3498篇
综合类   5101篇
化学工业   6834篇
金属工艺   3599篇
机械仪表   6883篇
建筑科学   6836篇
矿业工程   6975篇
能源动力   3256篇
轻工业   3120篇
水利工程   4520篇
石油天然气   7979篇
武器工业   683篇
无线电   1373篇
一般工业技术   4292篇
冶金工业   2645篇
原子能技术   898篇
自动化技术   2166篇
  2024年   77篇
  2023年   633篇
  2022年   1412篇
  2021年   1834篇
  2020年   1979篇
  2019年   1411篇
  2018年   1300篇
  2017年   1668篇
  2016年   1841篇
  2015年   2065篇
  2014年   3853篇
  2013年   3794篇
  2012年   5285篇
  2011年   5337篇
  2010年   3678篇
  2009年   3534篇
  2008年   3019篇
  2007年   3988篇
  2006年   3865篇
  2005年   3245篇
  2004年   2887篇
  2003年   2421篇
  2002年   2120篇
  2001年   1795篇
  2000年   1478篇
  1999年   1161篇
  1998年   965篇
  1997年   807篇
  1996年   676篇
  1995年   599篇
  1994年   515篇
  1993年   270篇
  1992年   239篇
  1991年   198篇
  1990年   146篇
  1989年   143篇
  1988年   85篇
  1987年   76篇
  1986年   51篇
  1985年   51篇
  1984年   18篇
  1983年   15篇
  1982年   20篇
  1981年   16篇
  1980年   18篇
  1979年   23篇
  1977年   4篇
  1976年   5篇
  1964年   4篇
  1959年   15篇
排序方式: 共有10000条查询结果,搜索用时 178 毫秒
1.
A wide range of dangerous and special tasks have witnessed the applications of wall-climbing robots, but they still cannot adapt well torough or sloping walls. This paper proposes a 6-DOF (degree of freedom) humanoid wall-climbing robot (HWCR) based on the principle of negative pressure suction. HWCR has the advantages of flexible adsorption feet, strong adaptability, strong anti-subversion performance, and high friction to the wall. We deduce mechanics formulas and carry out a parametric design of the foot structure so that it can meet the requirement of robot wall climbing. We use Fluent to analyze the flow field of the adsorption foot and determine the motor speed that can provide a reliable adsorption force. Using the D-H matrix to plan gait, we also design a compound cycloid-based foot trajectory to reduce the impact between the HWCR and the wall. Experiments on the uneven wall and sloping wall show that the vehicle can walk with an ideal gait, and the resistance value of the servo on each joint is much lower than the critical value, which ensures the smooth movement of the HWCR.  相似文献   
2.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   
3.
The present study investigates the combined influence of Channel to Rib Width (CRW) ratio and clamping pressure on the structure and performance of High Temperature-Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) using a three-dimensional numerical model developed previously. It also considers the impact of interfacial contact resistance between the Gas Diffusion Layer (GDL) and Bipolar Plate (BPP). The structural analysis of the single straight channel HT-PEMFC geometry shows that the von-Mises stress greatly increases in the GDL under the ribs as the CRW ratio increases resulting in considerably high deformation. The cell performance analysis depicts the significance of ohmic resistance and concentration polarization for different CRW ratios, particularly at higher operating current densities. However, in low to medium current density regions, the CRW ratio has little influence on cell performance. A substantial impact on the species, overpotential, and current distributions is observed. The findings also reveal that the CRW ratio significantly affects the temperature distribution in the cell.  相似文献   
4.
为研究既有线有砟轨道路基的翻浆冒泥机理,自主研发了一套能够模拟循环荷载–湿化耦合作用的模型试验系统。模型试样直径500 mm,由厚度分别为350 mm的路基土和200 mm的道砟组成,整个试样在高强度透明有机玻璃模型筒中制备完成。模型试验系统配备有监测荷载、位移、体积含水率和孔隙水压力的4种传感器,并通过高清相机对颗粒迁移过程进行图像捕捉。基于所研发的试验系统,针对辛泰铁路典型翻浆冒泥病害路段土样,开展翻浆冒泥模型试验。试验结果表明:动孔隙水压力是导致翻浆冒泥病害产生的关键因素。随着体积含水率的增加,动孔隙水压力引起的颗粒迁移量逐渐增加;在饱和状态下,会引起大量颗粒迁移,翻浆冒泥现象显著。试验结束时,道砟污染指数达到25%,在实际工程中已严重影响铁路的正常运营,有必要对污染道砟进行换填。  相似文献   
5.
6.
本文简介多功能液压支架拖运车的电控系统,包括电控箱的设计和主要电气元件的性能和选择依据。此电控系统能够一般电控系统的各种功能和保护,而且能够通过摄像头做到操作盲区和使用遥控器进行远程控制,从而提高液压支架的拖运效率、降低劳动强度和提高安全保障。  相似文献   
7.
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   
8.
A study on the liquefaction resistance of calcareous sands reinforced with polypropylene fibers was reported. Stress-controlled cyclic simple shear tests were conducted on specimens prepared at a relative density of 50%, with and without fiber reinforcements. The liquefaction behavior was investigated by considering the effects of fiber contents ranging from 0% to 1%, fiber lengths varying from 3 mm to 12 mm and loading patterns. The results indicated that increasing fiber content and fiber length resulted in a decrease in the deformation, a reduction in pore pressure accumulation rate, and improved the liquefaction resistance of calcareous sands. Additionally, the risk of soil liquefaction could be significantly reduced when the fiber content was greater than 0.8%. The multidirectional loading had a considerable effect in reducing the liquefaction resistance compared to unidirectional loading. Further, the stiffness degradation of calcareous sands decreased with increasing fiber content and fiber length. The pore pressure generated in the cyclic tests was analyzed and was found to be affected by fiber content. A pore pressure prediction model was proposed to obtain the pore pressure characteristics of fiber-reinforced calcareous sands under various fiber content conditions.  相似文献   
9.
10.
In-situ LA-ICP-MS and S isotopes of pyrite from the Baoshan Cu polymetallic deposit were conducted to investigate the ore-forming process and the enrichment mechanism of elements. Three generations of pyrite (Py I, Py II, and Py III) in the skarn-type ores and pyrite in the carbonate-hosted sulfide ores from central, western, and northern (C_Py, W_Py, and N_Py) mining districts are selected for comparison. Compared with Py I and Py III, the contents of most elements in Py II are apparently higher. The As and Se contents are high within a wide range and are decoupled in the growth band of the C_Py. The highest As, Se, and Pb contents were found in W_Py and N_Py. These results indicate the drastic changes in the temperature and fluid mixing during the mineralization. The occurrence of fluctuation and change in temperature and f(O2) was triggered by intermittent pulses of magmatic-hydrothermal fluids, mixing with meteoric water, and water−rock interactions. The sulfur isotopes of all species of pyrite indicated the magmatic source. The change in the f(O2) conditions caused slight differences in the sulfur isotope compositions. Consequently, a metallogenic model was proposed to explain the ore-forming processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号