首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   3篇
  水利工程   4篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 51 毫秒
1
1.
In floodplain ecosystems, the lateral hydrological connectivity between the main river channel and the secondary channels plays a major role in shaping both the habitat conditions and the macroinvertebrate diversity. Among other threats, human activities tend to reduce the lateral connectivity, which increases floodplain terrestrialization and induces a loss of aquatic biodiversity. Consequently, the restoration of lateral connectivity is of growing concern. We studied four secondary channels of the Rhône floodplain that were subjected either to no restoration or to three different restoration measures (river flow increase only, flow increase plus dredging and flow increase plus reconnection to the river). Macroinvertebrate and environmental data were analysed one year before and during a period of five years after restoration. We expected a progressive increase of lateral connectivity according to the type of restoration. Changes in macroinvertebrate assemblages were predicted to be towards more rheophilic communities and proportionally related to the changes in lateral connectivity. In the reconnected channel, lateral connectivity increased and remained high five years after restoration. In the dredged channel, the immediate increase of the lateral connectivity metric induced by sediment removal was followed by a rapid decrease. In the unrestored channel and the channel only influenced by flow increase, the metric remained constant in time. The macroinvertebrate composition and the rarefied EPT richness changes were proportionally related to the changes in lateral connectivity. Alien species richness and densities increased progressively in all channels after restoration. Our results showed that modifications of the lateral connectivity lead to predictable changes in macroinvertebrate diversity. Synergistic interactions between restoration and longer‐term changes (e.g. climatic change, invasion of alien species) encourage long‐term monitoring to assess the durability and trends of restoration measures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献
2.
As a consequence of historical damming and channelization, most large rivers are disconnected from their floodplains, which therefore endure severe deficits in fluvial dynamics. Regaining some degree of lateral connectivity can lead to improved geomorphological and biological interactions. Yet, it is necessary to take into account limitations posed by current uses and legislation. This study presents a methodological approach to the selection of a realistic restoration target for a heavily modified large river segment, the free‐flowing Upper Rhine River downstream of Iffezheim dam (France–Germany border), based on the analysis of the existing biogeomorphic deficits, constraints set by human uses, and previous restoration experiences. To achieve the selected restoration target, proposed scenarios include embankment removal, bank lowerings, and side channel widenings with the aim of increasing lateral hydrological connectivity and promoting morphodynamics (bank erosion in lateral channels) that allow for the renewal of floodplain habitats. Results from 2‐D hydraulic simulations allow for a sensitivity analysis, comparing the current situation with the proposed scenarios, through parameters such as shore length of side channels actively connected at both ends to the main channel (eupotamon), and shear stress as a proxy for initiation of gravel erosion. Outcomes indicate that the two proposed restoration scenarios would succeed in reconnecting side channels and in increasing areas prone to substrate erosion, while maintaining flood protection and the heaviest navigation use among European rivers. The presented approach aids in the assessment of potential large river restoration scenarios and, thus, in the discussion of water management strategies.  相似文献
3.
Knowledge of how invasive species use invaded habitats can aid in developing management practices to exclude them. Swan Lake, a 1100‐ha Illinois River (USA) backwater, was rehabilitated to restore ecosystem functions, but may provide valuable habitat for invasive bigheaded carps [bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix)]. Use (residency and passages) of Swan Lake by invasive bigheaded carps was monitored using acoustic telemetry (n = 50 individuals/species) to evaluate the use of a large, restored habitat from 2004 to 2005. Passages (entrances/exits) by bigheaded carps were highest in winter, and residency was highest in the summer. Bighead carp backwater use was associated with the differences in temperature between the main channel and backwater, and passages primarily occurred between 18:00 h and midnight. Silver carp backwater use was positively correlated with water level and main channel discharge, and fewer passages occurred between 12:00 h and 18:00 h than during any other time of day. Harvest occurring during summer or high main channel discharge could reduce backwater abundances while maintenance of low water levels could reduce overall backwater use. Conclusions from this study regarding the timing of bigheaded carps' use of backwater habitats are critical to integrated pest management plans to control invasive species. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献
4.
基于黏土心墙砂石坝的溃决过程,以及溃坝洪水传播和运动的特性,建立黑河金盆水库大坝溃口近区二维数值模型和下游地区溃坝洪水演进耦合数学模型。使用DAMBRK法计算逐渐溃坝,并应用其结果进行后续模拟。采用Abbott-Ionescu六点隐式有限差分格式求解一维模型,采用单元中心的有限体积法求解二维模型方程。采用侧向连接方式,将黑河两岸计算水位点与二维网格单元相连,实现一、二维模型的耦合。采用所建立的二维模型对溃口近区进行计算与模拟,得到计算区域某一时刻的水深及流速分布。应用所建耦合模型对黑河金盆水库万年一遇入库洪水漫顶致溃坝洪水进行数值模拟,得到一维河道内各断面的水位和流量变化过程,以及二维计算区域内不同时刻的水深分布图、流速矢量图和淹没范围变化过程。溃口的形成过程不仅包括漫顶水流的直接作用,同时包括溃口形成过程中两侧漩涡状水流的反冲刷作用。耦合模型可以同时兼顾河道内的水流变化以及河道外计算区域内的洪水演进过程,从而减少由于计算结果偏大或偏小所带来的防洪资源浪费和防洪措施不利等不良影响。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号