首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63955篇
  免费   8289篇
  国内免费   3520篇
电工技术   5581篇
技术理论   2篇
综合类   5389篇
化学工业   10773篇
金属工艺   7858篇
机械仪表   3665篇
建筑科学   7272篇
矿业工程   3140篇
能源动力   3065篇
轻工业   5654篇
水利工程   2605篇
石油天然气   3608篇
武器工业   685篇
无线电   4023篇
一般工业技术   6279篇
冶金工业   3338篇
原子能技术   566篇
自动化技术   2261篇
  2024年   226篇
  2023年   1404篇
  2022年   2502篇
  2021年   3097篇
  2020年   2991篇
  2019年   2341篇
  2018年   2081篇
  2017年   2706篇
  2016年   2678篇
  2015年   2737篇
  2014年   3916篇
  2013年   3766篇
  2012年   4671篇
  2011年   5018篇
  2010年   3623篇
  2009年   3848篇
  2008年   3083篇
  2007年   3693篇
  2006年   3518篇
  2005年   2954篇
  2004年   2446篇
  2003年   2114篇
  2002年   1742篇
  2001年   1477篇
  2000年   1261篇
  1999年   1105篇
  1998年   847篇
  1997年   687篇
  1996年   571篇
  1995年   572篇
  1994年   469篇
  1993年   343篇
  1992年   260篇
  1991年   217篇
  1990年   172篇
  1989年   140篇
  1988年   89篇
  1987年   74篇
  1986年   43篇
  1985年   28篇
  1984年   32篇
  1983年   20篇
  1982年   29篇
  1981年   11篇
  1980年   26篇
  1966年   8篇
  1964年   15篇
  1962年   8篇
  1959年   15篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
频率特性分析在工程应用中具有重要的作用,在电路分析、模拟电子技术、信号与系统、自动控制理论等相关课程中都涉及到相关章节内容,在不同课程中如何根据工程应用和学生学习阶段把握具体的讲解内容和讲解方式非常重要。本文从频率特性的求解方法和具体物理意义角度开展在不同课程中讲解的方法,从时域和频域角度分别讨论其物理意义和具体的分析方法。通过渐进深化的教学过程和教学方法不断提高学生的知识掌握和应用技能,提高学生的工程意识、工程素质和工程创新能力,强化学生对于频率特性课程知识的综合应用能力。  相似文献   
2.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
3.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
4.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
5.
Understanding the mechanisms leading to the rise and dissemination of antimicrobial resistance (AMR) is crucially important for the preservation of power of antimicrobials and controlling infectious diseases. Measures to monitor and detect AMR, however, have been significantly delayed and introduced much later after the beginning of industrial production and consumption of antimicrobials. However, monitoring and detection of AMR is largely focused on bacterial pathogens, thus missing multiple key events which take place before the emergence and spread of AMR among the pathogens. In this regard, careful analysis of AMR development towards recently introduced antimicrobials may serve as a valuable example for the better understanding of mechanisms driving AMR evolution. Here, the example of evolution of tet(X), which confers resistance to the next-generation tetracyclines, is summarised and discussed. Initial mechanisms of resistance to these antimicrobials among pathogens were mostly via chromosomal mutations leading to the overexpression of efflux pumps. High-level resistance was achieved only after the acquisition of flavin-dependent monooxygenase-encoding genes from the environmental microbiota. These genes confer resistance to all tetracyclines, including the next-generation tetracyclines, and thus were termed tet(X). ISCR2 and IS26, as well as a variety of conjugative and mobilizable plasmids of different incompatibility groups, played an essential role in the acquisition of tet(X) genes from natural reservoirs and in further dissemination among bacterial commensals and pathogens. This process, which took place within the last decade, demonstrates how rapidly AMR evolution may progress, taking away some drugs of last resort from our arsenal.  相似文献   
6.
Antibiotic resistance is a growing problem for public health and associated with increasing economic costs and mortality rates. Silver and silver-related compounds have been used for centuries due to their antimicrobial properties. In this work, we show that 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate/NHC*-Ag-OAc (SBC3) is a reversible, high affinity inhibitor of E. coli thioredoxin reductase (TrxR; Ki=10.8±1.2 nM). Minimal inhibition concentration (MIC) tests with different E. coli and P. aeruginosa strains demonstrated that SBC3 can efficiently inhibit bacterial cell growth, especially in combination with established antibiotics like gentamicin. Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR.  相似文献   
7.
8.
Resistance to chemotherapy still remains a major challenge in the clinic, impairing the quality of life and survival rate of patients. The identification of unconventional chemosensitizing agents is therefore an interesting aspect of cancer research. Resveratrol has emerged in the last decades as a fascinating molecule, able to modulate several cancer-related molecular mechanisms, suggesting a possible application as an adjuvant in cancer management. This review goes deep into the existing literature concerning the possible chemosensitizing effect of resveratrol associated with the most conventional chemotherapeutic drugs. Despite the promising effects observed in different cancer types in in vitro studies, the clinical translation still presents strong limitations due to the low bioavailability of resveratrol. Recently, efforts have been moved in the field of drug delivery to identifying possible strategies/formulations useful for a more effective administration. Despite the necessity of a huge implementation in this research area, resveratrol appears as a promising molecule able to sensitize resistant tumors to drugs, suggesting its potential use in therapy-refractory cancer patients.  相似文献   
9.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号