首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  国内免费   2篇
  完全免费   30篇
  石油天然气   107篇
  2018年   2篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   10篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   8篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1983年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
1.
页岩气赋存形式和初始原地气量(OGIP)预测技术   总被引:6,自引:2,他引:4  
页岩气有利区或核心区评价的关键是确定页岩初始原地气量(OGIP)的空间分布,页岩气赋存形式介于致密砂岩气与煤层气之间,主要呈3种状态:孔隙中游离气、固体有机质吸附气、油和水中溶解气,温度和压力条件控制3种状态气体的量和相互转化。游离气量主控因素是页岩孔隙度和气体饱和度,吸附气量主控因素是有机质数量和有机质成熟度,溶解气量的主控因素是页岩中残留油的数量。提出了页岩气中游离气量、吸附气量和溶解气量的算法,并在油气系统模拟软件Trinity 3D中实现页岩气OGIP量空间分布计算,以Fort Worth盆地Barnett页岩为例展示了这一技术的实际应用。  相似文献
2.
常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性   总被引:6,自引:0,他引:6  
野外采集的黏土岩的电镜扫描图像分析显示,黏土矿物孔隙分布于颗粒之间和颗粒内部板片自然错断处,前者形态不规则,后者呈楔形或面状缝隙。具层间结构的蒙脱石层内发育纳米级连通孔隙。蒙脱石微孔隙最为发育,伊-蒙混层黏土次之,其粒间孔和层面缝隙为20~100nm,层内连通孔隙小于50nm。高岭石黏土主要发育20~100 nm的粒间孔。伊利石和绿泥石晶体颗粒较大,以微米级孔隙为主。吸附实验所反映的各种黏土矿物甲烷吸附能力与电镜扫描反映的微孔发育程度相吻合,指示泥页岩中的纳米级微孔在一定程度上决定着泥页岩的比表面积和气体储存能力。黏土岩的孔隙发育与岩石成因和成岩演化有关,孔隙大小主要受黏土颗粒大小的控制。  相似文献
3.
真振幅全倾角单程波方程偏移方法   总被引:4,自引:0,他引:4       下载免费PDF全文
张宇  徐升  张关泉 《石油物探》2007,46(6):582-587,642
常规单程波方程偏移方法不能保持声波波场的传播振幅,大倾角的波场振幅被削弱,同时,波场的传播受到90°倾角的限制。针对这些问题.提出了真振幅全倾角单程波方程偏移方法。该方法首先向下延拓激发波场和接收波场,然后再将回转波场向上传播,从而将波场的传播角度范围拓宽到0°~180°,可以对任意倾角的构造进行成像,并通过引入真振幅校正项加强了大倾角结构的成像。将常规单程波方程偏移方法和真振幅全倾角单程波方程偏移方法应用于墨西哥湾地区复杂盐丘模型和实际资料,结果显示,盐丘的陡倾角侧翼边界在常规单程波偏移中不能得到很好成像,经过全倾角单程波方程偏移处理后被清晰地显示出来。真振幅全倾角单程波方程偏移方法的计算量大约是常规方法的两倍。  相似文献
4.
5.
Describing fluid transport in naturally fractured reservoirs entails additional challenge because of the complicated physics arising from matrix–fracture interactions. In this paper, the streamline-based simulation is generalized to describe fluid transport in naturally fractured reservoirs through a dual-media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. The transfer functions that describe fluid exchange between the fracture and matrix system can be implemented easily within the framework of the current single-porosity streamline models. In particular, the streamline time of flight concept is utilized to develop a general dual-porosity, dual-permeability system of equations for water injection in naturally fractured reservoirs. The saturations equations are solved using an operator splitting approach that involves ‘convection’ along streamline followed ‘matrix–fracture’ exchange calculations on the grid. The proposed formulation reduces to the commonly used dual-porosity model when the flow in the matrix is considered negligible. For modeling matrix–fracture interactions, two different transfer functions are examined: an empirical transfer function (ETF) and a conventional transfer function (CTF). The ETF allows for analytical solution of the saturation equation for dual porosity systems and is used to validate numerical implementation. Results obtained using the CTF are compared with a commercial finite-difference simulator (ECLIPSE) for waterflooding in five-spot and nine-spot patterns. The streamline approach shows close agreement in terms of recovery histories and saturation profiles with a marked reduction in numerical dispersion and grid orientation effects. Finally, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications.  相似文献
6.
7.
地震反演和储层建模是储层横向预测的两种方法。地质统计学地震反演是一种基于模型的地震反演,采用地质统计学空间插值技术建立模型,将测井曲线或测井解释成果曲线演化为“假阻抗”来合成地震记录,寻找子波,再将地震道直接反演成储层属性。这种方法避免了波阻抗转换为储层属性所造成的误差。储层建模横向预测中,应用协克里金算法联合地震反演与原始测井两种数据,综合建立地质模型。在孤家子—后五家户气田实际应用中,选取具有代表性的R2.5梯度曲线进行反演,反演结果反映了砂体分布。结合各井点测井解释数据,进行了储层建模,提高了横向预测精度。  相似文献
8.
We illustrate a fracture characterization technique applicable to all tight gas sandstones. The technique uses microfractures and cements in the rock mass identified using SEM-based cathodoluminescence imaging to provide information on unsampled large fractures, including strike and cross-cutting relationships, intensity, and likelihood of preserved open fractures. We applied the technique in two tight gas sandstone wells in the Pennsylvanian Pottsville Formation, Black Warrior Basin, Alabama, USA. In one well, data was obtained entirely from drilled 1–inch diameter sidewall cores that were oriented using image logs and features visible in cores. We predicted fracture porosity preservation in large fractures using late cements in the rock mass as a proxy for fracture observation. Results from the technique are consistent with what is known of large fractures in this area. Where we predicted open, high intensity fractures, substantial gas flares were observed during drilling. By combining microstructural and diagenetic observations, it is possible to overcome the inadequate fracture sampling that plagues evaluation of natural fractures and that relies solely on observations of macroscopically visible fractures.  相似文献
9.
Three-dimensional (3D) seismic data are commonly used to identify the size and shape of putative flow barriers in hydrocarbon reservoirs. It is less clear to what extent determining the spatial distribution of engineering properties (e.g., porosity, permeability, pressures, and fluid saturations) can improve predictions (i.e., improve accuracy and reduce uncertainty) of hydrocarbon recovery, given the multiple non-linear and often noisy transformations required to make a prediction. Determining the worth of seismic data in predicting dynamic fluid production is one of the goals of this paper.We have approached the problem of assessing uncertainty in production forecasts by constructing a synthetic reservoir model that exhibits much of the geometrical and petrophysical complexity encountered in clastic hydrocarbon reservoirs. This benchmark model was constructed using space-dependent, statistical relationships between petrophysical variables and seismic parameters. We numerically simulated a waterflood in the model to reproduce time-varying reservoir conditions. Subsequently, a rock physics/fluid substitution model that accounts for compaction and pressure was used to calculate elastic parameters. Pre-stack and post-stack 3D seismic amplitude data (i.e., time-domain amplitude variations of elastic responses) were simulated using local one-dimensional approximations. The seismic data were also contaminated with additive noise to replicate actual data acquisition and processing errors. We then attempted to estimate the original distribution of petrophysical properties and to forecast oil production based on limited and inaccurate spatial knowledge of the reservoir acquired from wells and 3D seismic amplitude data.We compared the multiple realizations of the various predictions against predictions with a reference model. The use of seismic amplitude data to construct static reservoir models affected production performance variables in different ways. For example, seismic amplitude data did not uniformly improve the variability of the predictions of water breakthrough time; other quantities, such as cumulative recovery after the onset of production, did exhibit an uncertainty reduction as did a global measure of recovery. We evaluate how different degrees of spatial correlation strength between seismic and petrophysical parameters may ultimately affect the ensuing uncertainty in production forecasts.Most of the predictions exhibited a bias in that there was a significant deviation between the medians of the realizations and that the value from the reference case. This bias was evidently caused by noise in the various transforms (some of which we introduced deliberately) coupled with nonlinearity. The key nonlinearities seem to be in the numerical simulation itself, specifically in the transformation from porosity to permeability, in the relative permeability relationships, and in the conservation equations themselves.  相似文献
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号