首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31577篇
  免费   1397篇
  国内免费   831篇
电工技术   709篇
技术理论   1篇
综合类   1461篇
化学工业   7308篇
金属工艺   1055篇
机械仪表   1169篇
建筑科学   1150篇
矿业工程   1370篇
能源动力   4386篇
轻工业   3935篇
水利工程   377篇
石油天然气   4116篇
武器工业   63篇
无线电   518篇
一般工业技术   1775篇
冶金工业   2540篇
原子能技术   238篇
自动化技术   1634篇
  2024年   26篇
  2023年   417篇
  2022年   812篇
  2021年   944篇
  2020年   1115篇
  2019年   779篇
  2018年   600篇
  2017年   728篇
  2016年   650篇
  2015年   650篇
  2014年   1773篇
  2013年   1949篇
  2012年   2260篇
  2011年   2282篇
  2010年   1841篇
  2009年   1696篇
  2008年   1410篇
  2007年   1866篇
  2006年   1903篇
  2005年   1656篇
  2004年   1435篇
  2003年   1329篇
  2002年   1178篇
  2001年   941篇
  2000年   803篇
  1999年   645篇
  1998年   465篇
  1997年   337篇
  1996年   295篇
  1995年   232篇
  1994年   198篇
  1993年   106篇
  1992年   114篇
  1991年   75篇
  1990年   53篇
  1989年   54篇
  1988年   37篇
  1987年   23篇
  1986年   20篇
  1985年   22篇
  1984年   9篇
  1983年   17篇
  1982年   4篇
  1981年   16篇
  1980年   15篇
  1979年   6篇
  1977年   5篇
  1975年   2篇
  1955年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
1.
生物质基喷气燃料是指全部或大部分来源于生物资源的喷气燃料,符合清洁低碳、安全高效的现代能源体系的要求。以生物质基喷气燃料替代传统石油基喷气燃料有助于我国早日实现“碳达峰、碳中和”的远大目标。在阐述生物质基喷气燃料生产工艺的发展历程及生物质基喷气燃料应用现状的基础上,提出高密度的生物质基喷气燃料是未来喷气燃料的发展方向,具有多环结构的生物质是合成高密度生物质基喷气燃料组分的优质原料;同时,总结了高密度生物质基喷气燃料组分生产工艺的研究进展,展望了生物质基喷气燃料未来的发展及挑战。  相似文献   
2.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
3.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   
4.
罗峰 《同位素》2021,34(3):301
252Cf、238Pu、237Np三种核素是用于深空探测和核能发电等领域的重要放射性同位素,国内主要依靠进口,来源有限。了解这三种核素的生产供应情况,对国内开展相关研究工作有重要参考价值。本文分别介绍了252Cf、238Pu、237Np的特性和用途,并概述了其生产供应情况。目前252Cf主要在美国橡树岭国家实验室(ORNL)和俄罗斯原子反应堆研究所(RIAR)的高中子通量反应堆辐照生产。冷战结束之后,238Pu两大生产国——美国和俄罗斯的生产能力逐渐丧失,随着深空探测任务对同位素电池的需求,近些年美俄两国正在陆续恢复生产。237Np作为238Pu生产的原材料,主要存在于裂变产物或高放废物中,通过后处理流程分离提取。为保障国内反应堆的稳定运行和深空探测任务的开展,建议尽快实现上述三种战略核素的自主供应能力。  相似文献   
5.
A typical problem in Northeast China is that a large amount of surplus electricity has arisen owing to the serious photovoltaic power curtailment phenomenon. To effectively utilize the excess photovoltaic power, a hybrid energy system is proposed that uses surplus electricity to produce hydrogen in this paper. It combines solar energy, hydrogen production system, and Combined Cooling Heating and Power (CCHP) system to realize cooling, heating, power, and hydrogen generation. The system supplies energy for three public buildings in Dalian City, Liaoning Province, China, and the system configuration with the lowest unit energy cost (0.0615$/kWh) was obtained via optimization. Two comparison strategies were used to evaluate the hybrid energy system in terms of unit energy cost, annual total cost, fossil energy consumption, and carbon dioxide emissions. Subsequently, the annual total energy supply, typical daily loads, and cost of the optimized system were analyzed. In conclusion, the system is feasible for small area public buildings, and provides a solution to solve the phenomenon of photovoltaic power curtailment.  相似文献   
6.
In this study, lignin was gasified in supercritical water with catalysis of CuO–ZnO synthesized by deposition precipitation, co-precipitation and sol-gel methods. Sol-gel synthesized CuO–ZnO showed the highest catalytic performance, and the gasification efficiency was increased by 37.92% with it. The XRD, SEM-EDS and N2 adsorption/desorption analysis showed that the priority of the sol-gel catalyst was the smallest crystallite size, largest specific surface area and high dispersion. For sol-gel synthesized CuO–ZnO, the increase of CuO/ZnO ratio improved the gasification efficiency but reduced H2 selectivity. And the catalytic activity was reduced with the calcination temperature above 600 °C due to enlarged crystallites and reduced pores. During sol-gel preparation, both the addition of ethanol and PEG in the solvent reduced the agglomeration and improved the catalytic activity. With CuO–ZnO prepared with 1 g PEG + water as the solvent, the highest H2 yield of 6.86 mol/kg was obtained, which was over 1.5 times of that without catalyst.  相似文献   
7.
To improve hydrogen production (HP) performance of regular-porous structure (RPS), a columnar RPS with small specific surface area and high superficial area is developed. A numerical simulation model of regular-porous stainless steel structure (RPSSS) is established. Subsequently, heat transfer performance, pressure loss, temperature, methanol concentration, H2 concentration distributions and HP performance of the columnar RPSSS with small specific surface area and high superficial area and the body-centered cubic RPSSS with high specific surface area and small superficial area are compared. Then, temperature, methanol concentration, H2 concentration distributions and HP performance of axial and longitudinal size-enlarged columnar RPSSSs are studied. The results show that compared to the body-centered cubic RPSSS, the columnar RPSSS has higher methanol conversion, larger H2 flow rate and higher CO selectivity. Especially in the condition of 300 °C wall temperature and 12 mL/h methanol-water mixture injection rate (MWMIR), the methanol conversion, H2 flow rate and CO selectivity of the columnar RPSSS are increased by 12.3%, 9.24% and 30%, respectively, indicating that the superficial area of RPSSS is more important for its HP performance compared to its specific surface area. Compared to the longitudinal size-enlarged columnar RPSSS, the axial size-enlarged columnar RPSSS has higher methanol conversion, larger H2 flow rate and higher CO selectivity. This research work provides a new method for the optimization of hydrogen production reaction support (HPRS).  相似文献   
8.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
9.
In this paper, a polypyrrole-carbon nanotube hydrogel (PPy-CNT) with 3D macroporous structure was prepared by secondary growth method. This self-supporting material with good conductivity and biocompatibility can be directly used as anode in a microbial fuel cell (MFC). The prepared material had a uniform structure with rich 3D porosity and showed good water retention performance. The effect of the mass ratio of PPy and CNT in the hydrogel were also investigated to evaluate the electrical performance of MFC. The MFC with 10:1 PPy-CNT hydrogel anode could reached the maximum power density of 3660.25 mW/m3 and the minimal electrochemical reaction impedance of anode was 5.06 Ω. The effects of Congo red concentration, external resistance and suspended activated sludge on decolorazation and electricity generation were also investigated in the MFC with the best performance hydrogel. When the Congo red concentration was 50 mg/L and the external resistance was 200 Ω, the dye decolorization rate and chemical oxygen demand (COD) removal rate could reach 94.35% and 42.31% at 48h while the output voltage of MFC was 480 mV. When activated sludge was present, the decolorization rate and COD removal rate could be increased to 99.55% and 48.08% at 48 h. The above results showed that the porous hydrogel anode had broad application prospects in synchronous wastewater treatment and electricity production of MFC.  相似文献   
10.
This study demonstrates the significant improvement in NH3 decomposition using Ni-decorated M–Mo–N-based catalysts (M = Co and Ni) compared with conventional catalysts. Catalysts are prepared using a mixture of the corresponding metal salts and hexamethylenetetramine, and the impregnation method is used to decorate the Ni-particles on the catalysts. Among all the samples, 10 wt% Ni-decorated Co3Mo3N exhibits the highest NH3 conversion rate (71%) at 500 °C, and the performance remains stable for 30 h of long-term testing. According to the gas chromatography measurements, the H2/N2 ratio is approximately 3 in all cases, which is consistent with the theoretical value. X-ray photoelectron spectroscopy results show that Co3Mo3N possesses the highest NH3 conversion efficiency because of the weaker binding energy of Mo–N. Furthermore, Co3Mo3N exhibits a stronger Lewis acidity and higher NH3 decomposition, which is attributed to the easy breaking of the N–H bond on the Co3Mo3N surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号