首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62156篇
  免费   5683篇
  国内免费   2737篇
电工技术   4075篇
技术理论   1篇
综合类   4662篇
化学工业   9199篇
金属工艺   3950篇
机械仪表   3948篇
建筑科学   7617篇
矿业工程   1484篇
能源动力   4409篇
轻工业   5523篇
水利工程   764篇
石油天然气   4764篇
武器工业   750篇
无线电   3646篇
一般工业技术   5339篇
冶金工业   3262篇
原子能技术   548篇
自动化技术   6635篇
  2024年   147篇
  2023年   1076篇
  2022年   2033篇
  2021年   2528篇
  2020年   2527篇
  2019年   1936篇
  2018年   1818篇
  2017年   2186篇
  2016年   2301篇
  2015年   2355篇
  2014年   3909篇
  2013年   3853篇
  2012年   4746篇
  2011年   4837篇
  2010年   3576篇
  2009年   3631篇
  2008年   3260篇
  2007年   4097篇
  2006年   3568篇
  2005年   3044篇
  2004年   2472篇
  2003年   2093篇
  2002年   1735篇
  2001年   1486篇
  2000年   1066篇
  1999年   860篇
  1998年   592篇
  1997年   500篇
  1996年   478篇
  1995年   340篇
  1994年   267篇
  1993年   187篇
  1992年   145篇
  1991年   121篇
  1990年   104篇
  1989年   77篇
  1988年   57篇
  1987年   43篇
  1986年   26篇
  1985年   38篇
  1984年   45篇
  1983年   31篇
  1982年   27篇
  1981年   20篇
  1980年   48篇
  1964年   28篇
  1963年   26篇
  1961年   22篇
  1959年   19篇
  1955年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
2.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
3.
In this study, NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak. It is demonstrated in simulations that two different scenarios of plasma cooling(complete cooling and partial cooling) take place for different amounts of injected impurities. For the impurity injection above a critical level, a single MHD activity is able to induce a complete core temperature collapse. For impurity injection below the critical level, a series of multiple minor disruptions occur before the complete thermal quench.  相似文献   
4.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
5.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
6.
Electric nanogenerators that directly convert the energy of moving drops into electrical signals require hydrophobic substrates with a high density of static electric charge that is stable in “harsh environments” created by continued exposure to potentially saline water. The recently proposed charge-trapping electric generators (CTEGs) that rely on stacked inorganic oxide–fluoropolymer (FP) composite electrets charged by homogeneous electrowetting-assisted charge injection (h-EWCI) seem to solve both problems, yet the reasons for this success have remained elusive. Here, systematic measurements at variable oxide and FP thickness, charging voltage, and charging time and thermal annealing up to 230 °C are reported, leading to a consistent model of the charging process. It is found to be controlled by an energy barrier at the water-FP interface, followed by trapping at the FP-oxide interface. Protection by the FP layer prevents charge densities up to −1.7 mC m−2 from degrading and the dielectric strength of SiO2 enables charge decay times up to 48 h at 230 °C, suggesting lifetimes against thermally activated discharging of thousands of years at room temperature. Combining high dielectric strength oxides and weaker FP top coatings with electrically controlled charging provides a new paradigm for developing ultrastable electrets for applications in energy harvesting and beyond.  相似文献   
7.
从汽车内饰轻量化方向考虑,研究了化学微发泡技术,从成核和气泡长大阶段进行研究,通过特殊的柔性后退core-back工艺,在充模过程中控制气泡的变形和破裂以保证成型制品的表面质量,实现化学微发泡成型制品无外观缺陷、质量减轻20%以上的目的。  相似文献   
8.
Canisters with a cast iron insert for mechanical strength and a 50-mm thick copper shell as corrosion protection are planned to be used for disposal of spent nuclear fuel in Sweden and Finland. Chloride can be considered “beneficial”, as it promotes active dissolution of copper rather than passivation (which might result in pitting), but a high concentration of chloride in solution would increase the driving force for corrosion through the formation of soluble copper chloro complexes. Thermodynamic calculations are performed in this study with the PHREEQC software and three of its accompanying databases, and a comparison with experimental data is performed to select the database to be used when evaluating repository performance. The activity coefficient models are given special attention. For the assessment of chloride-assisted corrosion of a KBS-3 canister, chloride concentrations pessimistically up to 5 mol/kg are used (in Finland and Sweden, the groundwater and bentonite porewater chloride concentrations are not expected to exceed 1 mol/kg). The resulting copper solubilities are then considered in different mass transport cases.  相似文献   
9.
从气窜机理、气窜预测方法、提高水泥浆防气窜性能、防气窜固井工艺技术四个方面进行研究,为固井防气窜提供理论依据,进而提升防气窜固井技术。  相似文献   
10.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号