首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12862篇
  免费   1207篇
  国内免费   1054篇
电工技术   204篇
综合类   715篇
化学工业   4540篇
金属工艺   887篇
机械仪表   117篇
建筑科学   689篇
矿业工程   351篇
能源动力   324篇
轻工业   2238篇
水利工程   184篇
石油天然气   1184篇
武器工业   82篇
无线电   862篇
一般工业技术   1790篇
冶金工业   594篇
原子能技术   211篇
自动化技术   151篇
  2024年   19篇
  2023年   209篇
  2022年   305篇
  2021年   471篇
  2020年   447篇
  2019年   410篇
  2018年   345篇
  2017年   428篇
  2016年   479篇
  2015年   476篇
  2014年   747篇
  2013年   704篇
  2012年   1043篇
  2011年   933篇
  2010年   723篇
  2009年   787篇
  2008年   598篇
  2007年   982篇
  2006年   907篇
  2005年   815篇
  2004年   674篇
  2003年   566篇
  2002年   407篇
  2001年   327篇
  2000年   265篇
  1999年   220篇
  1998年   167篇
  1997年   112篇
  1996年   114篇
  1995年   84篇
  1994年   75篇
  1993年   57篇
  1992年   51篇
  1991年   34篇
  1990年   39篇
  1989年   22篇
  1988年   9篇
  1987年   14篇
  1986年   7篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1977年   1篇
  1975年   2篇
  1959年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(20):28203-28209
Vanadium carbide (VC) as excellent ceramic and functional material is usually prepared by carbothermal reduction of V2O5 which must be extracted from a typical V slag by complex processes. Pollutants, such as ammonia-nitrogen wastewater, NH3 and CO2 are inevitably discharged. A novel and green method for VC preparation was proposed by one-step co-electrolysis of soluble NaVO3 and CO2 in molten salt. It was found that VC with high purity was easily obtained by reducing electrolysis temperature and CO2 flow rate to 600 °C and 10 mL min−1 at 3.0 V. Besides VC with particles and layered stacking structure in products, a small amount of carbon and oxygen elements existed. The atomic percentage contents of C, V, and O elements in VC were about 50.0%, 44.5% and 3.8%, respectively. During electrolysis, CO32− and VO3 was reduced at about −0.55 V (vs. Ag/AgCl) and −1.38 V (vs. Ag/AgCl), respectively. CO32− ions were more easily reduced than VO3, and was firstly reduced to CO22− and then converted to C. Then, VC was prepared by two routes from CO2 and NaVO3. One route is that VO3 ions are firstly electroreduced to VO2 ions and then are further electroreduced to VC with C. Another route is that VO3 ions are electroreduced to V which in-situ reacted with C to VC. Both VO3 and CO32− ions are electroreduced by two-step process. In final, VC is in-situ deposited on cathode. It provides a novel and green way to prepare VC and also achieves the high value-added utilization of vanadium slag and CO2.  相似文献   
2.
采用沉水植物表面流湿地(沉水组)、挺水植物表面流湿地(挺水组)和浮床湿地(浮床组)3种盐沼湿地对长江口近岸低污染水体进行脱氮除磷效能的研究。结果表明,HRT为3 d时,水组、挺水组、浮床组对NO3^--N的去除率在高温时段分别为79.9%±13.2%、71.8%±15.2%、77.2%±13.2%,中温时段分别为39.4%±13.7%、31.5%±8.5%、18.4%±16.6%,低温时段分别为15.6%±14.6%、19.7%±8.6%、2.%5±8.6%。沉水组和挺水组对TP的去除率受温度影响较小,分别为66.4%±32.4%、55.5%±29.4%;而浮床组除磷效果受温度影响较大。当HRT缩短为1.5 d时,3组湿地系统在高温时段仍可达到相近的脱氮除磷效果,在中低温时段脱氮除磷效果都有不同程度的下降。  相似文献   
3.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
4.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
5.
《Ceramics International》2021,47(24):34828-34835
In this paper, potassium titanate whiskers was prepared via the Molten salt synthesis on the surface of cordierite ceramics for the regeneration of diesel particulate filters (DPFs). SEM, EDS, XRD, FT-IR, TG-DSC and TPO were carried out to characterize the morphology, microstructure, growth mechanism and catalytic performance of the samples. Potassium titanate whiskers with diameter (100–500 nm) and length (about 3 μm) is tightly combined with the cordierite ceramic substrate. The catalyst performance investigation demonstrates that potassium titanate whiskers decrease the soot combustion temperature apparently. The soot combustion process was studied by thermal analysis tests, and the activation energy of the combustion reaction can be calculated using Freeman-Carroll method. The carbon oxidation activation energy is 14.009 kcal/mol, and the activation energy for the catalytic reaction with potassium titanate whiskers is 6.287 kcal/mol, it can be illustrated that potassium titanate whiskers/cordierite catalyst possess excellence performance for carbon catalytic combustion. The coarseness of the interface increased because potassium titanate whiskers grew on the cordierite substrate, and the trapping ability could improve. This unique microstructure has potential application in the DPF field.  相似文献   
6.
In the past decade, the perovskite solar cell (PSC) has attracted tremendous attention thanks to the substantial efforts in improving the power conversion efficiency from 3.8% to 25.5% for single-junction devices and even perovskite-silicon tandems have reached 29.15%. This is a result of improvement in composition, solvent, interface, and dimensionality engineering. Furthermore, the long-term stability of PSCs has also been significantly improved. Such rapid developments have made PSCs a competitive candidate for next-generation photovoltaics. The electron transport layer (ETL) is one of the most important functional layers in PSCs, due to its crucial role in contributing to the overall performance of devices. This review provides an up-to-date summary of the developments in inorganic electron transport materials (ETMs) for PSCs. The three most prevalent inorganic ETMs (TiO2, SnO2, and ZnO) are examined with a focus on the effects of synthesis and preparation methods, as well as an introduction to their application in tandem devices. The emerging trends in inorganic ETMs used for PSC research are also reviewed. Finally, strategies to optimize the performance of ETL in PSCs, effects the ETL has on J–V hysteresis phenomenon and long-term stability with an outlook on current challenges and further development are discussed.  相似文献   
7.
Homogenous ZrCxOy powders have been successfully synthesized by in-situ electro-reduction of solid ZrO2–C composite precursors in molten CaCl2. The effect of applied cell voltage and molar ratio of ZrO2 to C on preparation of ZrCxOy were investigated. The reduction pathway of the composite electrode was studied based on the analysis of intermediate products using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that ZrO2 is firstly converted to CaZrO3. The resulting CaZrO3 is then reduced to ZrCxOy. The ZrCxOy formation is dramatically influenced by electrolysis voltage and molar ratio of ZrO2 to C: a higher cell voltage and lower molar ratio of the ZrO2 to C are more preferable for the formation of ZrCxOy powder. Homogenous ZrCxOy powders with particle size of ~100 nm are synthesized by ZrO2/C starting elemental powders in CaCl2 molten salt at 1123 K for more than 3 h, when the cell voltage is 3.0 V and the molar ratio of the ZrO2 to carbon starting materials is 1:1.0.  相似文献   
8.
Inorganic nanoparticles (NPs) offer significant advantages to the biomedical field owing to their large surface area, controllable structures, diverse surface chemistry, and unique optical and physical properties. Researchers worldwide have shown that inorganic NPs and the released metal ions can act as therapeutic agents in targeted tissues or to cure various diseases without acute toxicity. In this progress report, the recent developments in inorganic NPs with different compositions directly used as therapeutics are discussed. First, the recent convergence of nanotechnology and biotechnology in biomedical applications as well as the unique functions, features, and advantages of inorganic NPs in biomedical applications are summarized. Thereafter, the biological effects of inorganic compositions in NPs which include balancing the intracellular redox environment, regulating the specific cellular signaling and cellular behaviors, and apoptosis are explained. In addition, the emerging therapeutic applications of inorganic NPs in various diseases are exemplified. Finally, the perspectives and challenges for overcoming the weaknesses of inorganic NPs as therapeutics are discussed. By carefully considering and investigating the biological effects of inorganic NPs and metal ions released from NPs, more promising inorganic NPs based therapeutic agents can be developed.  相似文献   
9.
王东 《水泥工程》2021,34(4):42-44
根据水泥烧成热耗的组成,降低高温设备表面散热是降低水泥烧成热耗的重要途径之一,而减少高温窑炉墙壁的热传导可有效降低设备的表面散热。本文在介绍无机内保温涂层隔热原理的基础上,对保温涂层的应用效果进行了对比研究,通过在传统耐火隔热材料的基础上增加新型无机内保温涂层,可有效降低高温设备外表面温度,减少水泥生产中的散热损失,达到节能降耗的目的。  相似文献   
10.
There are dozens of hydrogen production methods and techniques from many sources such as fossil fuels, renewable energy sources and nuclear energy in the literature. Thermo-chemical methods are more efficient at higher temperatures to produce large quantities of hydrogen. In this study, a comparative overview of Generation VI nuclear reactor types for major hydrogen production methods have been researched in the literature and suggestions have been carried out.This research work is addressing that both electric power cycle and hydrogen production based on nuclear technologies need to be developed. Generation IV nuclear reactors can provide hydrogen for a worldwide hydrogen economy. Both thermo-chemical and electrolysis (hybrid) processes in hydrogen production have a promising future, especially when integrated with Generation IV nuclear power plants. Efficient heat transfer is required for both high temperature thermodynamic cycles and the high temperature steam electrolysis. Hence, highly efficient heat exchanger designs are one of the key technologies for that purpose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号