首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21848篇
  免费   1962篇
  国内免费   879篇
电工技术   381篇
技术理论   1篇
综合类   1078篇
化学工业   9770篇
金属工艺   371篇
机械仪表   322篇
建筑科学   1174篇
矿业工程   178篇
能源动力   570篇
轻工业   1464篇
水利工程   171篇
石油天然气   2206篇
武器工业   243篇
无线电   1603篇
一般工业技术   4236篇
冶金工业   403篇
原子能技术   173篇
自动化技术   345篇
  2024年   72篇
  2023年   365篇
  2022年   330篇
  2021年   565篇
  2020年   622篇
  2019年   594篇
  2018年   539篇
  2017年   731篇
  2016年   717篇
  2015年   723篇
  2014年   1110篇
  2013年   1299篇
  2012年   1433篇
  2011年   1617篇
  2010年   1194篇
  2009年   1229篇
  2008年   1110篇
  2007年   1439篇
  2006年   1492篇
  2005年   1191篇
  2004年   1060篇
  2003年   986篇
  2002年   847篇
  2001年   736篇
  2000年   444篇
  1999年   383篇
  1998年   319篇
  1997年   206篇
  1996年   211篇
  1995年   172篇
  1994年   192篇
  1993年   164篇
  1992年   124篇
  1991年   94篇
  1990年   44篇
  1989年   44篇
  1988年   35篇
  1987年   24篇
  1986年   24篇
  1985年   57篇
  1984年   45篇
  1983年   33篇
  1982年   29篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1964年   4篇
  1957年   4篇
  1955年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
2.
The study aimed to prepare sustainable and degradable elastic blends of epoxidized natural rubber (ENR) with poly(lactic acid) (PLA) that were reinforced with flax fiber (FF) and montmorillonite (MMT), simultaneously filling the gap in the literature regarding the PLA-containing polymer blends filled with natural additives. The performed study reveals that FF incorporation into ENR/PLA blend may cause a significant improvement in tensile strength from (10 ± 1) MPa for the reference material to (19 ± 2) MPa for the fibers-filled blend. Additionally, it was found that MMT employment in the role of the filler might contribute to ENR/PLA plasticization and considerably promote the blend elongation up to 600%. This proves the successful creation of the unique and eco-friendly PLA-containing polymer blend exhibiting high elasticity. Moreover, thanks to the performed accelerated thermo-oxidative and ultraviolet (UV) aging, it was established that MMT incorporation may delay the degradation of ENR/PLA blends under the abovementioned conditions. Additionally, mold tests revealed that plant-derived fiber addition might highly enhance the ENR/PLA blend’s biodeterioration potential enabling faster and more efficient growth of microorganisms. Therefore, materials presented in this research may become competitive and eco-friendly alternatives to commonly utilized petro-based polymeric products.  相似文献   
3.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
4.
中国南海海域部分天然气水合物储层中地层砂为高泥质含量细粉砂,开采防控砂难度较大。针对高泥质细粉砂挡砂机制问题,使用粒度中值为10.13 μm的泥质细粉砂样品,模拟单向气液携砂流动条件,使用绕丝筛板、金属烧结网、金属纤维、预充填陶粒4类挡砂介质在20~80 μm挡砂精度下进行挡砂模拟实验,采用显微成像系统观察挡砂介质内部及表面砂粒沉积与堵塞动态,分析介质流通性能和挡砂性能变化,总结堵塞规律、微观挡砂机制与形态及其控制因素。研究结果表明,不同类型和精度的挡砂介质对泥质细粉砂的堵塞总体呈现堵塞开始、堵塞加剧和堵塞平衡3个阶段。随着驱替进行,挡砂介质渗透率逐渐降低,幅度会高达90%以上;同时过砂速度减缓,最终过砂率为5%~10%。根据堵塞规律和微观图像分析,提出了粗组分分选桥架、局部砂团适度挡砂、整体砂桥阻挡等挡砂介质对泥质细粉砂的3种微观挡砂机制。以粗组分分选桥架挡砂机制为主的挡砂工况下,挡砂介质堵塞渗透率较高,但过砂率超过15%,挡砂效果较差;以整体砂桥挡砂机制为主时,过砂率在10%以下,挡砂性能较好,但各类挡砂介质的堵塞渗透率不足1 D,流通性能较差。局部砂团适度挡砂机制为主时介质挡砂性能及流通性能介于两者之间。挡砂介质对天然气水合物储层泥质细粉砂的微观挡砂机制和形态受挡砂介质类型、精度、地层砂特征以及流动条件等因素控制,其规律对于水合物泥质细粉砂防控砂优化有指导意义。  相似文献   
5.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
6.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
7.
Frozen poultry meat is the most widely consumed animal-based food. However, water loss often leads to quality loss of poultry meat. Therefore, the present study sought to investigate the combined effect of calcium chloride (CaCl2) and pulsed electric fields (PEF) treatment on chicken breast meats and the mechanisms underlying protein degradation. The results showed that the synergistic effect was superior to the single treatment. Compared with the untreated group, the combination of CaCl2 and PEF increased water holding capacity of chicken breast meats by 16.61% and decreased cooking loss by 28.93%. Low-field nuclear magnetic resonance (LF-NMR) results indicated that the synergistic treatment promoted water molecules' binding capacity in myofibrils of poultry meat, which exhibited higher immobilised water. Additionally, the combination of CaCl2 and PEF led to increased degradation of proteins of high-molecular weight and surface hydrophobicity of myofibrillar protein. Furthermore, the extension of the protein molecule and microenvironmental changes promoted interaction between protein and water. In conclusion, the synergistic treatment of CaCl2 and PEF enhanced water retention and improved physicochemical properties of the myofibrillar protein in chicken breast meats.  相似文献   
8.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
9.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
10.
Structure design is the primary strategy to acquire suitable ionomers for preparing proton exchange membranes (PEMs) with excellent performance. A series of comb-shaped sulfonated fluorinated poly(aryl ether sulfone) (SPFAES) membranes are prepared from sulfonated fluorinated poly(aryl ether sulfone) polymer (SPFAE) and sulfonated poly(aryl ether sulfone) oligomer (SPAES-Oligomer). Chemical structures of the comb-shaped membranes are verified by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra. The comb-shaped SPFAES membranes display more continuous hydrophilic domains for ion transfer, because the abundant cations and flexible side-chains structure possess higher mobility and hydrophilicity, which show significantly improved proton conductivity, physicochemical stability, mechanical property compared to the linear SPFAE membranes. In a H2/O2 single-cell test, the SPFAES-1.77 membrane achieves a higher power density of 699.3 mW/cm2 in comparison with Nafion® 112 (618.0 mW/cm2) at 80 °C and 100% relative humidity. This work offers a promising example for the synthesis of highly branched polymers with flexible comb-shaped side chains for high-performance PEMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号