首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   268篇
  国内免费   91篇
电工技术   10篇
综合类   84篇
化学工业   370篇
金属工艺   261篇
机械仪表   38篇
建筑科学   6篇
矿业工程   47篇
能源动力   47篇
轻工业   75篇
水利工程   9篇
石油天然气   265篇
武器工业   8篇
无线电   125篇
一般工业技术   236篇
冶金工业   54篇
原子能技术   9篇
自动化技术   6篇
  2024年   5篇
  2023年   58篇
  2022年   73篇
  2021年   69篇
  2020年   67篇
  2019年   63篇
  2018年   80篇
  2017年   70篇
  2016年   70篇
  2015年   61篇
  2014年   84篇
  2013年   148篇
  2012年   84篇
  2011年   79篇
  2010年   63篇
  2009年   67篇
  2008年   52篇
  2007年   54篇
  2006年   87篇
  2005年   59篇
  2004年   36篇
  2003年   33篇
  2002年   30篇
  2001年   24篇
  2000年   18篇
  1999年   20篇
  1998年   13篇
  1997年   16篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1980年   1篇
  1959年   1篇
  1951年   2篇
排序方式: 共有1650条查询结果,搜索用时 15 毫秒
1.
Hydrogen has been considered as a promising renewable source to replace fossil fuels to meet energy demand and achieve net-zero carbon emission target. Underground hydrogen storage attracts more interest as it shows potential to store hydrogen at large-scale safely and economically. Meanwhile, wettability is one of the most important formation parameters which can affect hydrogen injection rate, reproduction efficiency and storage capacity. However, current knowledge is still very limited on how fluid-rock interactions affect formation wettability at in-situ conditions. In this study, we thus performed geochemical modelling to interpret our previous brine contact angle measurements of H2-brine-calcite system. The calcite surface potential at various temperatures, pressures and salinities was calculated to predict disjoining pressure. Moreover, the surface species concentrations of calcite and organic stearic acid were estimated to characterize calcite-organic acid electrostatic attractions and thus hydrogen wettability. The results of the study showed that increasing temperature increases the disjoining pressure on calcite surface, which intensifies the repulsion force of H2 against calcite and increases the hydrophilicity. Increasing salinity decreases the disjoining pressure, leading to more H2-wet and contact angle increment. Besides, increasing stearic acid concentration remarkably strengthens the adhesion force between calcite and organic acid, which leads to more hydrophobic and H2-wet. In general, the results from geochemical modelling are consistent with experimental observations that decreasing temperature and increasing salinity and organic acid concentration increase water contact angle. This work also demonstrates the importance of involving geochemical modelling on H2 wettability assessment during underground hydrogen storage.  相似文献   
2.
为分析单层石墨烯纳米片对核态池沸腾换热的影响机理,对基液为R141b、分散相为单层石墨烯纳米片的纳米制冷剂的核态池沸腾换热特征进行了测定,采用Hot Disk热物性分析仪和铂金板法分别测定了石墨烯纳米制冷剂的热导率和表面张力,采用接触角测量仪和扫描电子显微镜(SEM)观测了沸腾后加热表面的润湿性和形貌特征。实验中,单层石墨烯纳米片的质量百分含量(ω)为0.02%~0.50%,实验压力为一个标准大气压,热流密度为20~200 kW/m2。实验结果表明:单层石墨烯纳米片的加入,使制冷剂R141b的核态池沸腾换热得到强化;当ω=0.2%时,换热系数提高比例出现峰值,为57.7%。伴随ω的增加,石墨烯纳米制冷剂的热导率增大、表面张力减小,沸腾表面润湿性增强且微腔数先增后减,综合作用的结果导致存在一个最佳的单层石墨烯纳米片浓度(即ω=0.2%)使换热系数最高。  相似文献   
3.
Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10–20 μm) and was characterized by a water contact angle = 100°. PBCE* showed a smooth and continuous surface without voids and visible spherulite-like aggregations and was more hydrophobic (WCA = 110°). Both surface characteristics were modulated through the copolymerization of different amounts of ether-oxygen-containing co-units into PBCE chemical structure. We showed that only the surface characteristics of PBCE-solvent-casted films steered hBM-MSCs toward a neuronal-like differentiation. hBM-MSCs lost their canonical mesenchymal morphology, acquired a neuronal polarized shape with a long cell protrusion (≥150 μm), expressed neuron-specific class III β-tubulin and microtubule-associated protein 2 neuronal markers, while nestin, a marker of uncommitted stem cells, was drastically silenced. These events were observed as early as 2-days after cell seeding. Of note, the phenomenon was totally absent on PBCE* film, as hBM-MSCs maintained the mesenchymal shape and behavior and did not express neuronal/glial markers.  相似文献   
4.
This work addresses the phenomenon of the development of a patterned surface relief on polymer films via different modes of environmental crazing. Commercial films of semicrystalline poly(tetrafluoroethylene) (PTFE) and amorphous glassy poly(ethylene terephthalate) (PET) were subjected to tensile drawing in the presence of physically active liquid environments (carbon tetrachloride or aliphatic alcohols). The structure parameters and wettability of the modified films were studied by AFM, SEM, profilometer measurements and contact angle measurements. Environmental intercrystallite crazing of PTFE is accompanied by the development of an unstable structure with a high free surface, which experiences marked strain recovery upon unloading. As a result of the relief formation, PTFE hydrophobicity is enhanced (the water contact angle increases by 25°). Classical environmental crazing of PET films is accompanied by the formation of an anisotropic surface relief which is an assembly of crazes oriented perpendicular to the direction of tensile drawing, thus leading to the phenomenon of anisotropic wetting. The proposed approach for structural surface modification makes it possible to use the advantages of surface instability and spontaneous self‐organization of the polymer towards the development of a unique surface microrelief. © 2020 Society of Chemical Industry  相似文献   
5.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
6.
张石重  陈占秀  杨历  苗瑞灿  张子剑 《化工进展》2020,39(10):3892-3899
采用分子动力学方法研究纳米尺度下液氩在过热基板上的沸腾过程。通过调节固液间相互作用的方式改变壁面润湿性,模拟并分析了壁面润湿性对沸腾过程中能量传递和液体运动情况的影响。结果表明:不同润湿性表面均会发生固液分离的现象,但是固体表面附近吸附的氩原子数密度随润湿性增强而增大;润湿性较强时,液体的能量上升快,热通量高,液体内部温度梯度大,发生固液分离时间早,系统中氩的温度和能量低,上升过程中液氩密度、厚度变化小;润湿性较弱时,液体的能量上升慢,热通量小,液体内部温度梯度小,发生固液分离时间延后,系统中氩的温度、能量更高,上升过程中液氩密度、厚度变化较大。下部气体压力整体上大于上部气体压力,发生固液分离时润湿性越强的表面上液体上下压差越大,首次上升过程能达到的高度越高,所需时间越短。  相似文献   
7.
Abstract

Comfort has been one of the most important features of clothing, particularly for sportswear, which requires an effective transport of heat and moisture from the inner to the outer side of clothing. We herein report the use of a simple technique of spray coating and commercially available water repellents for a one-sided hydrophobic and self-initiated one-way water transport cotton fabric. The highlight of this work is the simplicity of the process and choice of chemicals that can be adopted easily by any textile finishing industry. On this fabric, water was able to diffuse and penetrate the fabric structure in one direction from the hydrophobic to the hydrophilic side but was unable to go the opposite direction. The directional transport improved with smaller droplets and lower add-on achievable by higher air pressure and longer distance of spray coating. From moisture management tests, the best result was obtained with the spray coating of Phobol NB-NH at an air pressure of 3.0?kgf/cm2 and a distance of 120?cm. Phobol NB-NH gave better result of transport and overall comfort properties than Phobotex RSY.  相似文献   
8.
The effective removal and transport of water in flow channels play an important role in the water management of proton exchange membrane fuel cells (PEMFCs). In this paper, a novel design of anode serpentine flow channel with the wettability gradient wall is discussed and numerically investigated by utilizing the volume-of-fluid (VOF) method. The effects of the contact angle and the wettability gradient of channel walls, as well as hydrogen flow velocity and water droplet size, on the droplet dynamic behavior are studied. The results indicate that compared with the conventional flow channel, the water droplet can be more effectively removed from the turning part in the wettability gradient flow channel. And the water removal ability in the turning part is improved with the increase of the wettability gradient. Moreover, the wettability gradient flow channel can also improve the water removal performance for the cases with different hydrogen flow velocities and water droplet sizes. This study provides ideas for guiding the design of flow channel to effectively enhance anode water management.  相似文献   
9.
《Ceramics International》2020,46(6):7324-7335
In order to obtain high-quality superalloy castings, the wettability and interactions between superalloy melts with various Y contents and SiO2-based ceramic cores were investigated at 1823 K. The results indicated that the wettability and interface reactions were affected by the content of Y in the alloy. For the alloys with Y content less than 0.011 wt%, no Y-oxide was found at the interface, but HfO2, Al2O3 and ZrO2 phases were formed, and the wetting angle dropped slightly. However, different Y-oxides precipitated at the alloy-ceramic interface for the alloys with Y content more than 0.017 wt%, and the wetting angle dropped sharply. When the content of Y was 0.017 and 0.025 wt%, Al2O3, Y3Al2(AlO4)3, HfO2 and ZrO2 phases were formed at the interface. When the content of Y was 0.1 wt%, YAlO3, Y3Al5O12, Y4Al2O9, HfO2 and ZrO2 phases were formed. The formation of different reaction products was mainly caused by the change of Y activity (aY) in the alloy. The reaction between Y and SiO2 could improve the wettability of the system apparently.  相似文献   
10.
Three-dimensional numerical simulation of liquid water emerging from the gas diffusion layer (GDL) surface to the gas flow channel in the proton exchange membrane (PEM) fuel cell (PEMFC) is carried out using the volume of fluid (VOF) method. The effects of the water velocity in the GDL hole, the airflow velocity and the wettability of the channel surfaces on the water emerging process and transport in the flow channel are investigated. It is found that at low water velocity, the water detaches from the water hole, forming discrete water droplets on the GDL surface, and is transported downstream on the GDL surface until removed from the GDL surface by the U-turn part of the flow channel; whereas at high water velocity, the continuous water column impinges the hydrophilic channel surface counter to the GDL surface, being directly removed from the GDL surface. The airflow velocity affects water detachment and impact process in the channel corner, and water droplet breakup is observed under high airflow velocity. The channel surface wettability influences water droplet shape and its transport in the channel. Rather than forming corner water films at the U-turn for hydrophilic channel surface, water maintains the droplet shape and smoothly passes through the U-turn for hydrophobic channel surface. The importance of the U-turn to the water removal is also discussed. The U-turn promotes water removal from the GDL surface at low water velocity and water breakup at high airflow velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号