首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   5篇
电工技术   1篇
机械仪表   4篇
武器工业   6篇
无线电   1篇
自动化技术   1篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2013年   1篇
  2011年   3篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
1.
滑油金属含量是航空发动机关键部件出现磨损及裂纹的表征。通过对其进行预测可提前发现相应部件的故障,保证飞行安全。笔者在分析发射光谱原始数据的基础上,将灰色预测模型应用于航空发动机滑油光谱分析技术中,建立了区间灰色模型,进行了误差计算,并对某型航空发动机滑油中5种元素的浓度监控值进行了预测分析。结果表明,运用灰色GM(1,1)模型方法预测某型航空发动机磨损趋势,达到了较高的准确率,且预测结果保持良好的一致性。  相似文献   
2.
为了实现对硝酸酯增塑聚醚(NEPE)推进剂药柱贮存寿命进行预估时的测量无损性,通过对施加10%定压缩应变的NEPE推进剂进行高温热加速老化实验、气体含量监测实验、单向拉伸力学性能实验,基于相关性分析和寿命预估模型,提出了一种以特征气体含量变化为基础数据的无损型寿命预估模型。结果表明,NEPE推进剂贮存老化过程中,CO气体释放量最大,不同温度条件下的释放量均达到1300 mg以上,且其和NO气体均呈现老化初期释放量增长缓慢,后期迅速增加的规律,HCl气体释放量在老化初期和后期增长较快,老化中期增长较慢;老化初期最大抗拉强度σm和最大延伸率εm小幅增大,老化中期前者小幅震荡,后者逐渐增大,老化后期两者均急剧减小;不同温度条件下CO气体释放量与最大抗拉强度关联度值最大,为0.93~0.95,且两者存在单一相关性;基于传统老化寿命预估模型和改进的老化寿命预估模型,建立了四种NEPE推进剂寿命预估方法,通过相关性系数比较和预估结果分析,得出以CO气体释放量作为预估参数的改进型寿命预估模型的相关性系数最大,寿命预估结果最为有效。  相似文献   
3.
为解决含能钝感增塑剂应用于硝酸酯增塑聚醚(NEPE)推进剂的问题,研究了增塑剂三羟甲基乙烷三硝酸酯(TMETN)、硝化甘油(NG)、1,2,4-丁三醇三硝酸酯(BTTN)与粘合剂预聚物聚乙二醇(PEG)的相容性。采用分子动力学模拟计算了PEG、TMETN、NG、BTTN四种纯物质的溶度参数及分子内和分子间径向分布函数,得到相容性优劣顺序为:TMETN/PEGBTTN/PEGNG/PEG。BTTN分子中的亚甲基和TMETN的结构削弱了自身分子间作用、降低了与PEG溶度参数的差值;分析了共混物的结合能及分子间径向分布函数,认为增塑剂与PEG相容的本质为"分子间以非键作用相结合,范德华作用占主要比重"。此外,增塑剂与PEG分子的极性越相近、范德华作用的占比越大;通过介观模拟得到体系的介观形态演变过程,发现NG/PEG及BTTN/PEG易发生相分离、TMETN/PEG仅发生轻微的同相归并。最终得出:含能钝感增塑剂TMETN与PEG的相容性优于BTTN及NG,可以考虑将其代替或部分代替NG、降低NEPE推进剂的感度,为低易损战术武器的发展提供依据。  相似文献   
4.
舰载导弹发动机药柱蠕变损伤研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对舰载立式贮存导弹固体发动机药柱蠕变的问题,通过对推进剂试件进行不同应力水平下蠕变试验,拟合蠕变时间硬化率方程,利用ABAQUS有限元软件对舰载立式贮存导弹固体发动机药柱进行分析.研究结果表明:舰载立式贮存的导弹发动机药柱在振动作用下应力载荷也呈周期性变化,重力和振动载荷引起发动机药柱内表面变形,中部变形最大,尾部次之,头部较小,蠕变占药柱总变形的60%以上,蠕变效应不可忽视.蠕变仿真得到的药柱变形方式,可为发动机寿命预估提供依据.  相似文献   
5.
分析了战斗机在发射武器和飞行过程中,预防发动机喘振的具体措施,探讨了预防喘调节器各结构尺寸对发动机防喘的影响,并给出了防喘装置改进设计的具体意见,研究了升压限制器的结构参数与系统防喘切油过程的关系.  相似文献   
6.
为改善硝酸酯增塑聚醚(NEPE)推进剂的安全性,采用分子动力学和介观动力学模拟,探索了混合增塑剂NG/TMETN(硝化甘油/三羟甲基乙烷三硝酸酯)增塑聚乙二醇(PEG)的力学性能、感度和相容性,设计的体系有PEG/NG、PEG/TMETN、PEG/NG/TMETN-1、2、3(NG∶TMETN的质量比为3∶1,1∶1,1∶3)。结果表明:在五种体系中,PEG/TMETN具有最优的力学性能、最低的感度和最佳的相容性;但是考虑到TMETN的能量较NG低,研究发现"混合增塑体系"综合了NG的高能量和TMETN的优异性能,在PEG/NG体系中掺入TMETN可有效降低体系的感度、减弱PEG的结晶性和NG的自聚集情况、改善体系的相容性(介观形态分布更加均匀);虽然混合增塑体系的力学性能较单一增塑体系的略差,但当TMETN含量较高时(NG∶TMETN为1∶3),体系的力学性能得到了改善、且具有良好的加工性能;此外,增塑剂与PEG的分子间氢键可以较好地描述混合增塑体系(组分相同)的力学性能,而单一增塑体系的力学性能受物质本身性质和结构的影响更大;最大引发键键长和内聚能密度均可以表征混合增塑体系的热感度。  相似文献   
7.
对燃气蒸汽式发射动力系统进行工作过程仿真.在此基础上进行数值模拟,计算发射筒内的温度、压力,以及导弹运动的速度、加速度和位移随时间的变化情况,研究其变化规律.计算结果可供相关研究参考.  相似文献   
8.
贮存期间硝化甘油的分解机理   总被引:1,自引:0,他引:1  
为分析硝化甘油(NG)贮存期间的分解反应机理,采用热分解实验监测了55℃和60℃下硝化甘油分解放出的CO、NO、NO_2三种气体浓度变化。通过密度泛函理论和正则变分过渡态理论计算了O—NO_2基团消去反应、HONO消除反应、α位夺氢反应和β位夺氢反应四种反应通道在20~60℃内起始反应的速率常数。结果表明:在55℃和60℃下分别以90天和70天为时间节点,硝化甘油分解放出的NO和CO两种气体浓度随着热分解时间的增长逐渐增大,而NO_2气体浓度则呈现先增大后减小的规律。在20~60℃,β位夺氢自催化反应速率最快,为其他三类反应速率的102~1011倍,HONO消除分解反应速率最慢,为其他三种反应速率的1/1011~1/105,而α位夺氢反应速率较NO_2基团消去反应快约两个数量级。鉴于NO_2分子作为分解反应生成物和自催化反应反应物的双重属性,可将硝化甘油贮存期间的分解过程以NO_2气体浓度达到最大的时间点为基准划分为两个阶段,第一阶段O—NO_2基团消去反应为主反应通道,α位和β位夺氢自催化反应速率随NO_2气体浓度的升高逐渐加快,第二阶段β位夺氢自催化反应为主反应通道,α位夺氢自催化反应通道为次反应通道。在整个过程中,HONO消除反应对硝化甘油的分解作用最小。  相似文献   
9.
介质阻挡放电等离子体中的电子碰撞能量转换过程   总被引:2,自引:1,他引:1  
通过计算建立的介质阻挡放电等离子体动力学模型,分析了等离子体中电子碰撞过程中的电子能量转换过程,为掌握等离子体强化燃烧机理奠定基础.结果表明:介质阻挡放电等离子体中的电子能量分布函数主要受约化场强的影响;随着约化场强的变化,电子能量损失于不同碰撞类型的比例不同,且在实验中常用的100~300Td之间,电子能量主要损失于...  相似文献   
10.
分析了NEPE固体推进剂化学老化原理,利用不同升温速率下得到的推进剂的热分解温度,按Kissinger法求得加热速率趋于零时试样的外推峰温,作为推进剂的自发火温度(自加热着火的最低温度)。为获得NEPE推进剂的自发火温度,利用微热量热仪进行推进剂2.0 K/min,1.0 K/min,0.1 K/min,0.05 K/min 4个升温速率下的温度扫描,得到不同升温速率下,NEPE推进剂的热分解温度(峰尖温度),外推获得NEPE自发火温度,由此获得NEPE推进剂的自发火温度为120℃.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号