首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   1篇
化学工业   1篇
金属工艺   3篇
武器工业   2篇
一般工业技术   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2018年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
为减小钛/钢爆炸焊接钛层的使用量,以低爆速乳化炸药作为焊接炸药,食盐作为传压层,成功实现厚度200 μm TA1钛箔与Q235钢的爆炸焊接.通过金相显微镜、扫描电镜和能谱仪对界面微观形貌进行分析,利用万能试验机对复合板试件进行拉伸、弯曲试验检测其结合性能. 结果表明,钛箔/钢界面呈规则的波形,主要以熔化层结合,具有良好的结合质量.靠近界面金属产生强烈的塑性变形,钢侧晶粒呈流线状.波后的旋涡内包含熔化块,未观测到孔洞、裂隙等缺陷.根据Ti和Fe元素原子比例,熔化块成分主要为FeTi,Fe2Ti等金属间化合物.三点弯曲和拉伸试件的界面均未出现分离,复合板材界面具有良好的塑性变形能力和结合性能.拉伸试件断口两侧的钛层与钢层存在大小不一的韧窝,主要呈塑性断裂.  相似文献   
2.
为提高炸药能量利用效率、降低能量耗散,利用自约束结构炸药进行爆炸焊接研究.以T2铜和Q345钢分别作为复层与基层,自约束结构炸药作为焊接炸药,借助ANSYS/AUTODYN软件模拟爆炸焊接过程,并进行T2/Q345爆炸焊接试验,对复合板试件进行拉剪性能检测和微观形貌观察分析其焊接质量.结果表明,T2/Q345爆炸焊接的碰撞速度距起爆端100 mm后均大于临界碰撞速度345 m/s,距起爆端150 mm处碰撞速度达到最大值567 m/s.T2/Q345复合板起爆端呈直线结合,并随着传爆距离增加变为波形结合.T2/Q345复合板远离起爆端的平均剪切强度为237.0 MPa,断裂位置位于铜一侧.试件被拉剪破坏后的铜层出现加工硬化现象,远离结合界面的显微硬度和塑性变形程度呈增强趋势.自约束结构炸药可降低自身爆炸产物飞散,使炸药能量更多地转化为复层动能,提高能量利用率.  相似文献   
3.
为了提高爆炸能量的利用率,减少焊接药量,提出采用自约束结构炸药进行爆炸焊接。采用T2铜板和Q345钢板分别作为复板和基板,通过理论计算得到T2/Q345爆炸焊接窗口。采用双层蜂窝结构炸药作为自约束结构焊接炸药,对T2铜与Q345钢的爆炸焊接进行了试验研究。通过力学性能测试和显微组织观察,研究了T2/Q345复合板的结合性能。结果表明:与爆速为2505和3512 m·s-1的单层炸药相比,T2/Q345复合板爆炸焊接采用的双层蜂窝结构炸药量分别减少了54.4%和31.4%;随着传播距离的增加,复合板的结合界面由直线结合向波状结合转变。复合板的抗拉剪切强度为237.0 MPa,满足T2/Q345复合板的结合强度要求。爆炸产生的硬化发生在结合界面附近,采用双层蜂窝结构炸药爆炸焊接得到的T2/Q345复合板具有良好的结合性能。  相似文献   
4.
以乳化炸药为基,玻璃微球作为稀释剂,通过铝蜂窝板制备低爆速蜂窝结构炸药。对间隙配合的槽型界面钛板与钢板进行爆炸-轧制复合,并分析研究钛-钢复合板界面结合性能。实验结果表明:乳化炸药爆速随着玻璃微球含量的增加而线性降低;铝蜂窝板可以降低乳化炸药临界直径,爆速为2 549m/s的铝蜂窝炸药临界厚度为9mm。爆炸压接后复合板未实现冶金结合,界面出现缝隙,轧制后钛-钢复合板界面实现冶金结合。  相似文献   
5.
为提高炸药爆炸能量利用率,减小焊接药量,提出利用自约束结构装药开展爆炸焊接研究.通过理论计算得到T2/Q345爆炸焊接窗口,并且以T2铜和Q345钢分别作为覆层和基层,采用双层蜂窝结构炸药作为焊接能量,开展T2/Q345爆炸焊接实验研究.研究结果表明以自约束结构的双层蜂窝炸药爆炸焊接得到的T2/Q345复合板结合性能良好,相对于爆速分别为2505 m·s-1和3512 m·s-1单层装药结构炸药,双层蜂窝炸药进行T2/Q345爆炸焊接分别可以节约54.4%和31.4%药量,并且随着碰撞点移动,T2/Q345复合界面从平直状结合转变为波形结合.  相似文献   
6.
针对目前爆炸复合炸药存在的问题,采用玻璃微球作为敏化剂和稀释剂,通过改变玻璃微球尺寸与含量,利用电测法测量爆速,研究其对乳化炸药爆轰性能的影响;制备爆速为2 530.5m/s的蜂窝结构乳化炸药,分析了玻璃微球尺寸和含量对乳化炸药密度及爆速的影响;然后进行铜/钢爆炸复合,再通过金相显微镜(OM)观察复合板界面的结合性能。结果表明,小尺寸(粒径为5~100μm)玻璃微球的敏化效果和调节爆速效果均比大尺寸(粒径为70~200μm)玻璃微球的要好;乳化炸药的玻璃微球质量分数小于1%或者大于40%时,均会发生拒爆现象;小尺寸(粒径为5~100μm)玻璃微球的质量分数在5%~30%时,随着玻璃微球含量的增加,乳化炸药爆速从4 915m/s降至1 923m/s,密度从1.14g/cm3降至0.70g/cm~3;爆速2 530.5m/s的铝蜂窝结构炸药临界厚度为9mm,蜂窝板可以降低乳化炸药的临界直径;铜/钢复合板界面呈小波状,具有良好的结合质量。  相似文献   
7.
针对传统爆炸复合炸药的缺点,采用玻璃微球作为稀释剂,通过改变玻璃微球含量,研究其对乳化炸药密度与爆速的影响,通过乳化炸药制备蜂窝结构炸药,用于金属板的爆炸焊接。T2铜板和Q235钢板分别作为覆层和基层,其相应尺寸分别为2 mm×150 mm×300 mm和20 mm×150 mm×300 mm,选用两种爆速(2596 m/s和3089.5 m/s)的蜂窝结构炸药作为爆炸复合炸药,进行铜-钢爆炸焊接,然后利用微观形貌分析观察复合板结合性能。实验结果表明:玻璃微球含量大于5%小于35%时,炸药密度和爆速均随着玻璃微球含量的增加而降低;玻璃微球含量为40%时,发生拒爆现象。炸药爆速随着炸药密度的降低而下降。铝蜂窝板可以降低乳化炸药临界直径,爆速也有所提高。爆速低的蜂窝结构炸药进行爆炸焊接,T2/Q235复合板界面呈小波状,结合性能良好。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号