首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   7篇
化学工业   1篇
武器工业   8篇
一般工业技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
排序方式: 共有10条查询结果,搜索用时 14 毫秒
1
1.
为验证时间-温度-应力原理在TATB基PBX拉伸蠕变中的适用性,实现长期拉伸蠕变变形评估计算,开展了某TATB基PBX恒应力不同温度的常规拉伸蠕变实验和恒温度梯级拉伸蠕变实验,采用陈氏法对梯级加载蠕变曲线进行分解处理,得到恒温度不同应力的拉伸蠕变曲线,基于非线性粘弹性材料的时间-温度-应力等效原理,采用二分法计算程序对各蠕变柔量曲线进行了平移汇集,获得了参考温度和应力(30 ℃、3.0 MPa)下的温度应力耦合蠕变柔量主曲线和考虑温度和应力的Williams-Landel-Ferry方程参数。结果表明在所分析的温度范围(30~50 ℃)和应力范围内(1.0~5.5 MPa),TATB基PBX的拉伸蠕变行为较好地符合时间-温度-应力等效原理描述,可以利用该原理通过高温度高应力的PBX短期拉伸蠕变实验预测其低温低应力的长期拉伸蠕变变形。  相似文献   
2.
为解决高聚物粘结炸药(Polymer Bonded Explosive,PBX)拉伸强度测试中哑铃直拉法(GJB772A-1997)测试效率不高以及巴西试验测试精度欠佳的问题,基于液压致裂原理自主搭建了测试平台,发展了拉伸强度液压致裂测试方法,实现了PBX炸药的拉伸强度的准确测试。为验证该测试方法的有效性,以某PBX模拟材料哑铃试样为研究对象,在同一发试样中先后进行了标准直拉法和液压致裂法拉伸强度测试实验,并将测试结果进行对比。结果表明,液压致裂法测得的拉伸强度((9.49±0.24)MPa)与直拉法测得的拉伸强度((9.24±0.43)MPa)相对误差仅为2.70%,具有很好的测试精度。液压致裂法可在单发哑铃的残样上获得至少四个有效的拉伸强度数据,相较于直拉法具有测试用量少、测试效率高的特点,且测试稳定性良好,表明该测试方法兼具了哑铃直拉法的高精度和巴西试验的低用量高效率,同时可作为一种原位测试手段广泛运用于配方研制以及结构件不同位置的拉伸强度测试。  相似文献   
3.
围压对于PBX材料的力学性能影响显著,围压影响的实质为静水压力的影响。该文基于Boltzmann本构模型,建立了考虑静水压力影响的TATB基PBX准静态Boltzmann-P非线性弹性本构模型,提出了针对该本构模型的非线性计算方法,采用Mises等效应力-应变并引入泊松比提出了一维本构模型转化为三维模型的数值方法,然后通过二次开发实现了本构模型以及相应算法的实际应用。通过对单位体积单元进行计算,在无围压条件以及围压两种条件下Boltzmann-P模型描述精度均高于Boltzmann模型,验证了Boltzmann-P本构模型及相应算法与所开发程序的正确性。  相似文献   
4.
为了满足高聚物黏结炸药(PBX)内部拉伸应力测试的需要,利用液压致裂法和孔边应力状态修正实验,建立了基于液压致裂法的PBX炸药内部拉伸应力测试方法。为验证测试方法的有效性,采用材料万能试验机模拟构件内部拉伸应力,结合自主搭建的PBX液压致裂测试平台,开展了不同拉伸应力下的液压致裂应力测试实验。结果表明,直接利用液压致裂法能定性描述PBX炸药的内部拉伸应力,测试结果与预加拉伸应力有较好的相关性(相关系数为98.90%),但不能定量描述;通过对带孔试样进行单轴拉伸实验,获得孔边有效应力集中系数,对液压致裂法的孔边应力状态进行修正,修正后的应力值与预加应力吻合较好,平均相对误差10.67%。建立的测试方法不受测试深度限制,理论上可以测出拉伸应力的大小和方向,是一种基于液压致裂法的PBX炸药内部拉伸应力定量测试方法。  相似文献   
5.
高聚物粘结炸药(PBX)的应力应变曲线普遍存在非线性显著和对称性较差的特点,本构模型构建困难是炸药材料力学性能研究中的一个难题。以PBX‐901为研究对象,开展了不同温度下的单轴拉伸和单轴压缩试验,根据获得的S型应力应变曲线,基于Boltzmann函数分别推导建立了一种四参数本构模型和一种双参数本构模型。结果表明:较之于四参数本构模型,双参数本构模型的参数确定不需要参数拟合,仅采用压缩强度和初始段弹性模量解析求解的方式获取即可,描述精度误差低于5%。最后采用ANSYS软件的二次开发模块,实现了双参数本构模型在巴西圆盘试验中的数值模拟应用,试验结果和数值模拟结果的对比分析显示二者的相对误差仅5.11%,表明所建立的双参数本构模型的描述精度满足工程需要。  相似文献   
6.
为准确建立三氨基三硝基苯(TATB)基高聚物粘接炸药(PBX)材料的强度准则,通过自主研制的主动围压试验机获取了不同温度(22.5,35,50℃),不同围压(0~10 MPa)下材料的强度;根据单轴拉伸、单轴压缩以及围压压缩实验数据,采用传统Drucker-Prager(D-P)以及双曲D-P强度准则分别建立了不同温度下TATB基PBX材料的强度模型,并分析了其对于强度实验数据的预测精度。结果表明,双曲D-P强度准则对于22.5,35,50℃下强度实验数据的预测相对误差最大分别为2.41%,3.46%,5.22%,均方根误差分别为0.42,0.38,0.44 MPa,优于传统D-P强度准则结果;对于间接三轴拉伸和压缩破坏应力状态的预测,其相对误差分别为4.93%和12.14%,总体上均优于传统D-P、Mohr-Column、双剪以及单轴强度准则。考虑中主应力影响且处处正则的双曲D-P强度准则能准确预测不同温度下TATB基PBX材料的强度特性。  相似文献   
7.
以1,3,5?三氨基?2,4,6?三硝基苯(TATB)基高聚物粘结炸药(PBX)材料为研究对象,在-40~75℃下开展了准静态的单轴拉伸、压缩试验,获得了预设17个温度点下的应力应变关系数据;以温度、应变为自变量,应力为因变量,基于支持向量机(SVM)算法对拉伸压缩条件下的应力应变关系进行了描述,并对构建的关系式进行了误差分析。结果表明,在-40~75℃内,材料的拉伸强度和压缩强度均随温度的升高而劣化,应力应变曲线的非线性和拉压非对称性特征变化明显;同时,采用一组参数基于SVM算法实现了不同温度下TATB基PBX拉伸压缩应力应变关系的描述,解决了模型参数常随温度变化的问题,构建的关系式平均绝对百分比误差不超过7.77%,相关系数均大于0.998,表现出了良好的适用性。  相似文献   
8.
高聚物粘结炸药(PBX)的应力应变曲线普遍存在非线性显著和对称性较差的特点,本构模型构建困难是炸药材料力学性能研究中的一个难题。以PBX‐901为研究对象,开展了不同温度下的单轴拉伸和单轴压缩试验,根据获得的S型应力应变曲线,基于Boltzmann函数分别推导建立了一种四参数本构模型和一种双参数本构模型。结果表明:较之于四参数本构模型,双参数本构模型的参数确定不需要参数拟合,仅采用压缩强度和初始段弹性模量解析求解的方式获取即可,描述精度误差低于5%。最后采用ANSYS软件的二次开发模块,实现了双参数本构模型在巴西圆盘试验中的数值模拟应用,试验结果和数值模拟结果的对比分析显示二者的相对误差仅5.11%,表明所建立的双参数本构模型的描述精度满足工程需要。  相似文献   
9.
董天宝  袁洪魏  赵龙  唐维 《含能材料》2020,28(5):456-463
为了研究高聚物粘结炸药(PBX)结构在复杂应力状态下裂纹的起裂特征,针对中心贯穿斜裂纹的无限大平板模型,基于考虑T应力的裂纹尖端应力场和Drucker-Prager强度准则,理论上给出了考虑材料拉压比、泊松比、静水压力、应力状态、裂纹面闭合摩擦以及T应力的PBXⅠ-Ⅱ复合型裂纹尖端失效区隐式控制方程。利用裂纹尖端失效区最小半径起裂准则,研究了T应力对PBX裂纹尖端失效区和起裂行为的影响。理论研究表明,远场拉伸下,T应力导致裂尖失效区增大(0°β45°)或减小(45°β90°),T应力使裂纹起裂角减小;远场压缩下,裂纹处于纯Ⅱ型状态,裂纹面闭合摩擦效应减小了裂尖失效区,但不影响起裂角。T应力使压剪裂纹起裂角增大并减小了失效区。同时,T应力使最危险裂纹倾角β0明显增大。因此,研究PBX裂纹起裂行为,需要充分考虑裂纹尖端T应力的影响。  相似文献   
10.
为了研究温度对准静态加载下奥克托今(HMX)基高聚物黏结炸药(PBX)断裂行为的影响规律,利用半圆盘弯曲(Semi-circular Bending, SCB)准静态断裂试验,采用数字图像相关法(Digital Image Correlation Method, DICM)和基于裂纹扩展计(Crack Propagation Gauge, CPG)的裂纹扩展速率测试系统,研究了25,35,45,55,60℃和65℃下HMX基PBX的断裂特征、断裂阻力、损伤容限和裂纹失稳扩展速率。结果表明,随着温度升高,HMX基PBX断裂特征从脆性断裂逐渐转变为韧性断裂,表征裂纹起裂阻力的断裂韧度显著降低,损伤容限有一定的增强。半圆盘准静态弯曲脆性断裂条件下,裂纹失稳扩展速率在扩展路径上呈现出慢-快-慢的规律,最高速率约370 m·s-1,温度升高导致裂纹失稳扩展速率有一定程度的降低。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号