首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11675篇
  免费   1216篇
  国内免费   742篇
电工技术   750篇
综合类   1250篇
化学工业   1740篇
金属工艺   539篇
机械仪表   547篇
建筑科学   1332篇
矿业工程   330篇
能源动力   401篇
轻工业   304篇
水利工程   374篇
石油天然气   481篇
武器工业   122篇
无线电   1135篇
一般工业技术   1772篇
冶金工业   299篇
原子能技术   129篇
自动化技术   2128篇
  2024年   20篇
  2023年   182篇
  2022年   263篇
  2021年   341篇
  2020年   367篇
  2019年   323篇
  2018年   307篇
  2017年   389篇
  2016年   420篇
  2015年   447篇
  2014年   652篇
  2013年   731篇
  2012年   860篇
  2011年   881篇
  2010年   725篇
  2009年   738篇
  2008年   634篇
  2007年   765篇
  2006年   665篇
  2005年   560篇
  2004年   520篇
  2003年   461篇
  2002年   362篇
  2001年   340篇
  2000年   251篇
  1999年   191篇
  1998年   174篇
  1997年   159篇
  1996年   149篇
  1995年   123篇
  1994年   110篇
  1993年   71篇
  1992年   68篇
  1991年   80篇
  1990年   65篇
  1989年   46篇
  1988年   38篇
  1987年   22篇
  1986年   18篇
  1985年   24篇
  1984年   23篇
  1983年   13篇
  1982年   15篇
  1981年   9篇
  1980年   6篇
  1979年   9篇
  1977年   4篇
  1976年   6篇
  1973年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
Low-thermal conductivity ceramics play an indispensable role in maximizing the efficiency and durability of hot end components. Pyrochlore, particularly zirconate pyrochlore, is currently a highly promising and widely studied candidate for its extremely low thermal conductivity. However, there are still few pyrochlores that offer both stiffness, insulation, and good thermal expansion properties. In this work, the solidification method was innovatively introduced into the preparation of titanate pyrochlore, and combined it with the compositional design of high-entropy. Through careful composition design and solidification control, the high-density and uniform elements distributed high-entropy titanate pyrochlore ceramics were successfully prepared. These samples possess high hardness (15.88 GPa) and Young’s modulus (295.5 GPa), low thermal conductivity (0.947 W·m?1·K?1), excellent thermal expansion coefficient (11.6 ×10?6/K) and an exquisite balance between stiffness and insulation (E/κ, 312.1 GPa·W?1·m·K), in which the E/κ exhibits the highest value among the current reported works.  相似文献   
2.
Numerical simulations are performed to investigate the real gas effects on shock/expansion fan interaction. Initial perfect gas simulations at low enthalpy capture the flow structures efficiently and outcomes are found to have excellent agreement with the analytical calculations. Furthermore, the simulations with the real gas solver for different enthalpies showed that the variation in enthalpy significantly changes the flow structures. It is observed that an increase in enthalpy leads to a decrease and increase in the postshock and postexpansion fan Mach numbers, respectively. Another important observation is the decrement in the peak pressure ratio with an increment in the enthalpy. These effects are noted to be more pronounced for Mars's environment due to the higher dependency of specific heat on temperature.  相似文献   
3.
针对煤炭开采过程中出现的突水事故,采用RFPA数值模拟软件建立采动模型,对底板裂隙破断过程和声发射进行模拟,研究煤层底板采动裂隙扩展突水通道,结果表明:离断层越近,断层内水压导升高度越高,断层出现活化,裂隙扩展发育,最终贯通形成导水通道,在进行注浆改造后,单个钻孔的最大涌水量为8 m3/h,说明注浆加固防治水效果较好,能确保工作面的安全回采。  相似文献   
4.
5.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
6.
《Ceramics International》2022,48(1):548-555
Silica-based ceramic cores are widely utilized for shaping the internal cooling canals of single crystal superalloy turbine blades. The thermal expansion behavior, creep resistance, and high temperature flexural strength are critical for the quality of turbine blades. In this study, the influence of zircon, particle size distribution, and sintering temperature on the high-temperature performance of silica-based ceramic cores were investigated. The results show that zircon is beneficial for narrowing the contraction temperature range and reducing the shrinkage, improving the creep resistance and high-temperature flexural strength significantly. Mixing coarse, medium and fine fused silica powders in a ratio of 5:3:2, not only reduced high temperature contraction, but effectively improved the creep resistance. Properly increasing the sintering temperature can slightly reduce the thermal deformation and improve the high-temperature flexural strength of the silica-based core, but excessively high sintering temperature negatively impacts the creep resistance and high-temperature flexural strength.  相似文献   
7.
《Ceramics International》2022,48(8):10733-10740
Multivalent ion-conducting ceramics are required for the manufacture of high-safety, high-capacity rechargeable batteries. However, the low ionic conductivity of solid electrolytes and discrepancies in the thermal expansion between the battery components limit their widespread application. Furthermore, anisotropic thermal expansion in crystals during battery manufacturing and the charge-discharge cycles causes the formation of microcracks, which degrade the battery performance. The physical properties of ceramic materials with anisotropic crystal structures can be modified by varying the crystallographic orientation of their grains. In this study, a co-precipitation approach was used to synthesize an Mg2+-conducting (Mg0.1Hf0.9)4/3.8Nb(PO4)3 solid electrolyte, and the grain orientation in the bulk sample was controlled using strong magnetic fields during the slip casting process. The results showed that inducing an orientation along the c-axis enhanced the apparent ionic conductivity of the bulk sample. It was also observed that (Mg0.1Hf0.9)4/3.8Nb(PO4)3 crystal has a negative volumetric thermal expansion despite a positive linear thermal expansion along its c-axis. By adjusting the c-axis orientation of the grains, (Mg0.1Hf0.9)4/3.8Nb(PO4)3 electrolytes with negative or positive linear thermal expansion coefficient have been produced. The findings of this study suggest that solid-electrolytes with negative, positive, or zero linear thermal expansion can be produced to create more compatible and higher-performance solid-state devices.  相似文献   
8.
In the present study, we investigate the fundamental properties of CeO2 by selecting La3+ (57), and Dy3+ (66) as dopants with optimized average atomic number of 61.5, which lies in between Pm3+ (62) and Sm3+ (62) in accordance with the criteria for optimum doping. A system of co-doped ceria ceramics Ce1–x–yLaxDyyO2-δ ((x, y) = (0.00, 0.00), (0.025, 0.025), (0.05, 0.05), (0.075, 0.075), (0.10, 0.10), (0.00, 0.20) and (0.20, 0.00)) as electrolytes for intermediate temperature solid oxide fuel cells were successfully prepared by a well-known sol-gel auto-combustion route. In order to obtain dense samples, the prepared pellets were sintered in air at 1300 °C for 4 h using conventional furnace and relative densities of all the samples were found to be higher than 95%. Single phase cubic structure, microstructural density and elemental composition analysis of all the samples were studied by powder X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy techniques, respectively. Raman spectroscopy analysis confirmed the formation of concentrated O2-–vacancies in the co-doped ceria system. Impedance spectroscopy measurements revealed the high value of total ionic conductivity and low activation energy for the composition Ce0.85La0.075Dy0.075O2?δ i.e., 2.08 × 10–2 S cm–1 and 0.58 eV, respectively. Linear thermal expansion analyses of all the samples revealed the matched thermal expansion coefficients. Finally, these results recommend that the Ce0.85La0.075Dy0.075O2?δ sample can be useful as a solid electrolyte in IT-SOFC applications.  相似文献   
9.
ABSTRACT

This paper studies stochastic optimization problems with polynomials. We propose an optimization model with sample averages and perturbations. The Lasserre-type Moment-SOS relaxations are used to solve the sample average optimization. Properties of the optimization and its relaxations are studied. Numerical experiments are presented.  相似文献   
10.
The formation mechanism of an internal crack was clarified from the viewpoint of the crystallography and thermal expansion. An inverse pole figure map obtained by EBSD pattern showed that the crack propagated along the grain boundaries having high ∑ values within the columnar zone. After the crack initiation, these positions were considered to undergo cracking followed by propagation toward the equiaxed side. Near the termination position, the grains ahead of crack propagation had a Schmid factor higher than 0.45 consuming elastic strain energy. Thermal expansion measurements showed that the grain with (0 0 1) orientation had the largest expansion while that with (0 1 1) the smallest. The grain boundaries neighboring the combination of (0 0 1) and (0 1 1) grains had the largest thermal stress. Therefore, thermal stress contributed to the initiation of cracking. It was thus proposed to enlarge the equiaxed zone to prevent cracking by discontinuing the crack propagation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号