首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   92篇
  国内免费   9篇
电工技术   5篇
综合类   16篇
化学工业   81篇
金属工艺   3篇
机械仪表   16篇
建筑科学   5篇
能源动力   402篇
水利工程   2篇
石油天然气   11篇
武器工业   1篇
无线电   1篇
一般工业技术   62篇
冶金工业   1篇
原子能技术   5篇
自动化技术   3篇
  2024年   2篇
  2023年   34篇
  2022年   66篇
  2021年   126篇
  2020年   84篇
  2019年   59篇
  2018年   25篇
  2017年   37篇
  2016年   17篇
  2015年   12篇
  2014年   26篇
  2013年   29篇
  2012年   28篇
  2011年   18篇
  2010年   13篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有614条查询结果,搜索用时 31 毫秒
1.
The present article investigates the influence of Joule heating and chemical reaction on magneto Casson nanofluid phenomena in the occurrence of thermal radiation through a porous inclined stretching sheet. Consideration is extended to heat absorption/generation and viscous dissipation. The governing partial differential equations were transformed into nonlinear ordinary differential equations and numerically solved using the Implicit Finite Difference technique. The article analyses the effect of various physical flow parameters on velocity, heat, and mass transfer distributions. For the various involved parameters, the graphical and numerical outcomes are established. The analysis reveals that the enhancement of the radiation parameter increases the temperature and the chemical reaction parameter decreases the concentration profile. The empirical data presented were compared with previously published findings.  相似文献   
2.
以正辛基三乙氧基硅烷和3-巯基丙基三乙氧基硅烷为改性剂,以双氧水为氧化剂,在水基环境下对亲水纳米SiO2颗粒表面进行改性,得到具有磺酸基和辛基的双亲纳米SiO2颗粒,并通过红外和热重对其化学结构和热稳定性进行分析。将双亲纳米SiO2颗粒分散在地层水中制备纳米流体,并评价纳米流体的稳定性、界面性质和渗吸效率。利用核磁共振技术探究纳米流体渗吸过程中岩心孔隙内原油运移规律。结果表明,纳米流体储存30 d未出现分层现象,表现出良好的稳定性;经纳米流体处理的岩心亲水性增强。此外,双亲纳米SiO2颗粒将油水界面张力降低至1.7 mN/m;纳米流体渗吸采收率高达22.6%,渗吸初始阶段小孔隙中的原油被动用,而在渗吸后期阶段大孔隙中的原油才被动用。  相似文献   
3.
Flow phenomena of three-dimensional conducting Casson fluid through a stretching sheet are proposed in the present investigation with the impact of the magnetic parameter in a permeable medium. The adaptation of particular transformations is useful to modify the governing equations into their nondimensional as well as the ordinary form. However, these transformed equations are nonlinear and approximate analytical methods for the solution of the complex form of governing equations. In particular, the Adomian decomposition method is proposed for the solution. The behavior of several variables, such as the magnetic and porous matrix, on the flow profile as well as the rate of shear stress, are discussed via graphs and tables. The conformity of the current result with the earlier study shows a road map for further investigation. The major concluding remarks are; the retardation in the velocity distribution is rendered due to an increase in the Casson parameter moreover, the Casson parameter favors in reducing the rate of shear stress coefficient in magnitude.  相似文献   
4.
The main aim of the current paper is to investigate the mass and heat transportation of a Casson nanomaterial generated by the inclination of the surface. The magnetic field effect along with suction or injection are considered. The working nanomaterial is taken into consideration based on the concept of the Buongiorno nanofluid theory, which explores the thermal efficiencies of liquid flows under movement of Brownian and thermophoretic phenomena. The emergent system of differential expressions is converted to dimensionless form with the help of the appropriate transformations. This system is numerically executed by the implementation of Keller–Box and Newton's schemes. A good agreement of results can be found with the previous data in a limiting approach. The behavior of the physical quantities under concern, including energy exchange, Sherwood number, and wall shear stress are portrayed through graphs and in tabular form. The Nusselt number and Sherwood number are found to diminish against the altered magnitudes of Brownian motion and the inclination parameter. Moreover, the velocity profile decreases with the growth of the inclination effect. In the same vein, the buoyancy force and solutal buoyancy effects show a direct relation with the velocity field. The outcomes have promising technological uses in liquid‐based systems related to stretchable constituents.  相似文献   
5.
Modern magnetic nanomaterial processing operations are progressing rapidly and require increasingly sophisticated mathematical models for their optimization. Stimulated by such developments, in this paper, a theoretical and computational study of a steady magnetohydrodynamic nanofluid over an exponentially stretching/shrinking permeable sheet with melting (phase change) and radiative heat transfer is presented. Besides, wall transpiration, that is, suction and blowing (injection), is included. This study deploys Buongiorno's nanofluid model, which simulates the effects of the Brownian motion and thermophoresis. The transport equations and boundary conditions are normalized via similarity transformations and appropriate variables, and the similarity solutions are shown to depend on the transpiration parameter. The emerging dimensionless nonlinear coupled ordinary differential boundary value problem is solved numerically with the Newton-Fehlberg iteration technique. Validation with special cases from the literature is included. The increase in the magnetic field, that is, the Hartmann number, is observed to elevate nanoparticle concentration and temperature, whereas it dampens the velocity. Higher values of the melting parameter consistently decelerate the boundary layer flow and suppress temperature and nanoparticle concentration. A higher radiative parameter strongly increases temperature (and thermal boundary layer thickness) and weakly accelerates the flow. The increase in the Brownian motion reduces nanoparticle concentrations, whereas a greater thermophoretic body force strongly enhances them. The Nusselt number and Sherwood number are observed to be decreased with an increasing Hartmann number, whereas they are elevated with a stronger wall suction and melting parameter.  相似文献   
6.
This investigation discusses the influences of a chemical reaction and concentration‐dependent viscosity on a magnetohydrodynamics peristaltic pump of synovial nanofluid in a tapered channel. Chemical reaction and Hall current effects are considered in the proposed investigation. The current study is solved for two suggestion models. In Model‐(I), the concentration is considered as a function in viscosity. In Model‐(II), concentration is considered as a function of the shear‐thinning index. The related study is rearranged under the models of low Reynolds number and long wavelength. The system study of highly nonlinear partial differential equations is explained mathematically with the aid of ParametricNDSolve by using Mathematica 11. Both models have been compared numerically and a huge difference is found between them. Results for velocity profile, temperature, and nanoparticle concentration distributions are obtained graphically for similar values of various physical parameters in three‐dimensional forms. Furthermore, a trapping bolus sketch is proposed in the terminus. The results confirm that the AJ patients can be cured by using the magnetic field in the presence of an electrically inducing influence, as a result of the effort of the ions inside the cell, which accelerates the metabolism of fluids. In addition, maximum values of velocity can control the friction between the joints and thus reduce arthritis.  相似文献   
7.
Contraction and expansion play a crucial role in biomedical applications, such as heart pumping, ovum in the feminine fallopian vessel, blood fluid transport, and so forth. Inspired by these features, the present effort concentrates on the consequences of a thermal slip in the peristalsis of Cu/blood and Cu–CuO/blood nanofluids in asymmetric flow formation. Hence, the microrotation influence of blood flow is considered here. Heat transported through the channel due to perpendicular flow buoyancy effects is also studied. The special effects of thermal radiation, nanoparticle shape, and heat source/sink parameters on the flow are studied in the proposed model. The MATLAB BVP4c condition is utilized to achieve the numerical solutions of the transformed system of nonlinear coupled differential equations. The most important outcome of the present analysis is an enhancement in the evaluation study of the Cu/blood and Cu–CuO/blood nanofluids on the axial velocity, axial spin velocity, pressure gradient, and temperature distributions in the asymmetric channel. Also, another important outcome is observed that the Cu–CuO blood nanofluid strongly has dominated the Cu/blood nanofluid in axial spin velocity.  相似文献   
8.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   
9.
The Caputo and Caputo–Fabrizio derivative are applied to study a second‐grade nanofluid over a vertical plate. A comparative analysis is presented to study the unsteady free convection of a second‐grade nanofluid with a new time–space fractional heat conduction. The governing equations with mixed time–space fractional derivatives are non‐dimensionalized and solved numerically, and a comparison between the Caputo and the Caputo–Fabrizio models is made. It is found that the temperature is higher for the Caputo–Fabrizio fractional model than the Caputo model, but the higher velocity only exists near the vertical plate for the Caputo–Fabrizio model than the Caputo model. Moreover, the velocity for the Caputo model will exceed the Caputo–Fabrizio model as y evolves.  相似文献   
10.
In this investigation, the flow of an unsteady mixed convection boundary layer viscous nanofluid on a stretchable sheet is considered. The flow examination is affected by a magnetic field. The reason for the examination exhibited is to create models for nanomaterials that incorporate the Brownian movement and thermophoresis phenomena. The created nonlinear standard differential condition is illuminated numerically utilizing the Runge-Kutta-Gill technique and the start program. The different factors of speed, temperature, and concentration are reported and discussed. The examination shows that the speed, temperature, and concentration are lower in contrast with the consistent stream on account of an assisting flow, whereas the opposite situation is noticed in the opposing flow case. The effects of Brownian movement and thermophoresis in the concentration case are totally different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号