首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24723篇
  免费   2240篇
  国内免费   867篇
电工技术   684篇
技术理论   7篇
综合类   2350篇
化学工业   4737篇
金属工艺   583篇
机械仪表   918篇
建筑科学   1981篇
矿业工程   303篇
能源动力   830篇
轻工业   4244篇
水利工程   253篇
石油天然气   390篇
武器工业   224篇
无线电   1740篇
一般工业技术   4193篇
冶金工业   523篇
原子能技术   223篇
自动化技术   3647篇
  2024年   86篇
  2023年   646篇
  2022年   670篇
  2021年   1194篇
  2020年   942篇
  2019年   870篇
  2018年   795篇
  2017年   885篇
  2016年   919篇
  2015年   959篇
  2014年   1565篇
  2013年   1883篇
  2012年   1935篇
  2011年   1672篇
  2010年   1252篇
  2009年   1369篇
  2008年   1244篇
  2007年   1252篇
  2006年   1014篇
  2005年   887篇
  2004年   738篇
  2003年   629篇
  2002年   481篇
  2001年   404篇
  2000年   289篇
  1999年   253篇
  1998年   189篇
  1997年   114篇
  1996年   1139篇
  1995年   569篇
  1994年   414篇
  1993年   73篇
  1992年   62篇
  1991年   49篇
  1990年   42篇
  1989年   28篇
  1988年   40篇
  1987年   17篇
  1986年   22篇
  1985年   40篇
  1984年   46篇
  1983年   28篇
  1982年   28篇
  1981年   15篇
  1980年   16篇
  1979年   11篇
  1978年   11篇
  1977年   8篇
  1976年   6篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
结合全球倡导的营养导向型农业和功能性食品的内容,首次提出“功能性小麦品种”的概念,将其定义为“含有对人体健康有益的活性成分,可调节人体有益代谢,能给人体健康带来某种益处或满足特定人群的特殊需求,同时可以作为日常食物的口感正常、无毒副作用的小麦品种类型”;结合疫情警示和我国进入后工业时代后,人们需求必将由“吃得饱”、“吃得好”向“吃得健康”转变,因而提出继高产品种、优质品种之后培育“功能性小麦品种”的育种目标。根据多年关于小麦淀粉、蛋白、酯类和其他成分的功能研究结果,介绍新育成的“麦黄酮”、“高色素”、“高抗性淀粉”、“富锌”、“低醇溶蛋白”和“低植酸”等功能性小麦新品种(系)的营养特性和农艺产量状况;根据“健康中国2030”规划等国家战略,进行“功能性品种培育是解决我国功能性食品‘卡脖子’的关键基础,一种功能性品种可以形成一类功能性食品,多种功能性品种可以形成我国功能性面制品产业,推动我国整个食品工业的发展”的前景展望;根据功能性品种及其食品的稳定性和可靠性是产品和市场的“生命线”,从对消费者负责的高度,提出关于“功能性农作物品种审定导向和组建功能性成分检测机构;编制有关功能性品种和食品的国家或行业标准,设立功能性食品和功能性农作物品种的商业标志,保证我国功能性农作物品种及其食品健康发展”等方面的具体建议。  相似文献   
2.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
3.
Polyvinylidene fluoride (PVDF) has several crystal forms of which the α-form is nonpolar, while the β-form is polar and has the highest piezoelectric constant. α PVDF, when stretched, transforms into the β form, which has wide applications in sensors and actuators. Steered molecular dynamics simulations are used to study the transformation of a single chain of PVDF from a trans–gauche conformation to an all trans one. The Helmholtz free energy change (∆F) is estimated using Jarzynski's equality. The transformation starts at the chain ends followed by the transformation of the remaining chain. The free energy change for the transformation is found to be always positive, indicating that the TGTG' form has higher thermodynamic stability than the all trans form throughout the studied temperature range. With increasing temperature, free energy change for the transformation increases monotonically.  相似文献   
4.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
5.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
6.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
7.
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.  相似文献   
8.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
9.
Through Density Functional Theory (DFT) simulations, we have explored the possibility of yttrium (Y) doped Triazine (Covalent Triazine Frameworks i.e., CTF-1) to be a promising material for reversible hydrogen storage. We have found that Y atom strongly bonded on Triazine surface can adsorb at the most 7H2 molecules with an average binding energy of ?0.33 eV/H2. This boosts the storage capacity of the system to 7.3 wt% which is well above the minimum requirement of 6.5 wt% for efficient storage of hydrogen as stipulated by the US Department of Energy (DoE). The structural integrity over and above the desorption temperature (420 K) has been entrenched through Molecular Dynamics simulations and the investigation of metal-metal clustering has been corroborated through diffusion energy barrier computation. The mechanism of interactions between Y and Triazine as well as between H2 molecules and Y doped Triazine has been explored via analyses of the partial density of states, charge density, and Bader charge. It has been perceived that the interplay of H2 molecules with Y on Triazine is Kubas-type of interaction. The above-mentioned analysis and outcomes make us highly optimistic that Y doped Triazine could be employed as reversible hydrogen storage material which can act as an environmentally friendly alternate fuel for transport applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号