首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22470篇
  免费   2256篇
  国内免费   1583篇
电工技术   1289篇
综合类   3189篇
化学工业   2113篇
金属工艺   1260篇
机械仪表   1267篇
建筑科学   2069篇
矿业工程   731篇
能源动力   1282篇
轻工业   1447篇
水利工程   950篇
石油天然气   1106篇
武器工业   203篇
无线电   1481篇
一般工业技术   3395篇
冶金工业   798篇
原子能技术   375篇
自动化技术   3354篇
  2024年   36篇
  2023年   327篇
  2022年   488篇
  2021年   668篇
  2020年   783篇
  2019年   642篇
  2018年   564篇
  2017年   663篇
  2016年   747篇
  2015年   757篇
  2014年   1166篇
  2013年   1455篇
  2012年   1585篇
  2011年   1700篇
  2010年   1217篇
  2009年   1225篇
  2008年   1199篇
  2007年   1371篇
  2006年   1305篇
  2005年   1174篇
  2004年   994篇
  2003年   876篇
  2002年   750篇
  2001年   632篇
  2000年   590篇
  1999年   476篇
  1998年   409篇
  1997年   370篇
  1996年   358篇
  1995年   316篇
  1994年   269篇
  1993年   214篇
  1992年   190篇
  1991年   160篇
  1990年   159篇
  1989年   129篇
  1988年   96篇
  1987年   48篇
  1986年   29篇
  1985年   22篇
  1984年   22篇
  1983年   13篇
  1982年   18篇
  1981年   20篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1964年   9篇
  1962年   6篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   
3.
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from-0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.  相似文献   
4.
郭昊 《中国矿业》2021,30(S1):463-466
Riemann-Liouville分数阶微积分算子是一类带有一个函数的分数阶微积分算子的特殊情形,以Riemann-Liouville分数阶微积分算子的积分中值定理和微分中值定理为基础,我们得到了一类带有一个函数的分数阶微积分算子的积分中值定理和微分中值定理,并给出其在计算方面的一些应用。  相似文献   
5.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
6.
A new, experimental method based on air flow rate rather than current is presented to optimize operating parameters for the stacks and systems of proton exchange membrane fuel cells (PEMFCs) for maximizing their net power. This approach is illustrated for a commercial 18 kW PEMFC module. The impact of contamination pressure drop across the cathode air filter is also investigated on the compressor behavior. It is further shown that a 4V reduction in the compressor voltage reduces its power consumption by 9.1%. Using the 3D graphs of the power-pressure-flow data, it is found that the stack pressure of 180 kPaa is superior to the higher tested pressures as it enhances the net power by 7.0 and 13.7% at different conditions. Application of the present study will lead to the development of PEMFCs with higher power output by optimizing stack pressure, stoichiometry and air flow to properly deliver the system design specifications.  相似文献   
7.
The study of shock wave propagation in a detonation chamber is of great importance as a part of the plate forming process. Investigations related to the effects of premixed gas detonation on the deflection of a plate require in-depth examination. An Eulerian-Lagrangian numerical simulation is conducted using the space-time conservation element and solution element method of LS-DYNA software to study the effect of confined multi-point ignited gaseous mixture on the dynamic response of thin plates clamped at the end of a combustion chamber. The FSI couples a Lagrangian finite element solver with a Eulerian fluid solver in a 2D space with detailed chemistry of H2–O2 mixture. The solution contains the detonation wave propagation through the combustion chamber and its interaction with the plate. The influence of variation in the multi-point ignition locations and combustion chamber dimensions on the pressure history and plate deflection is studied. To verify the model, a comparison with the experimental study is carried out using an adjustable model representative of the real experiment. The verified model is used to link the evolution of plate shape with the arrival time and intensity of shock waves within the chamber. It is found that a longer distance between the ignition point and the plate intensifies the ultimate deflection of the plate. In addition, a fairly large combustion area employed in a direction rather than transverse to the plate surface is unable to influence the ultimate deformation of the plate.  相似文献   
8.
《Ceramics International》2022,48(3):3261-3273
C/C–SiC composites have enormous potential as a new generation of brake materials. It is worth studying the friction and wear behaviours of these materials in special environments to ensure the safe and effective braking of trains in practical applications. In this study, the braking behaviours and wear mechanisms of C/C–SiC mating with iron/copper-based PM in dry, wet and salt fog conditions are compared in detail. The results show that the coefficient of friction (COF) in the wet condition is reduced by 14.13% compared with that under the dry condition. The COF value of the first braking under salt fog condition is increased by 12.27% and 30.75% compared to the dry and wet conditions, respectively. Additionally, the tail warping phenomenon of the braking curve disappears in wet condition, which is attributed to the weak adhesion of friction interfaces and the lubrication of the water film. The main wear mechanisms of C/C–SiC mating with iron/copper-based PM under dry condition are adhesive, fatigue and oxidation wear. However, the dominant wear in wet condition is abrasive wear. The cooling and lubrication of water reduce the tendency of thermal stress, and weaken adhesive and fatigue wear. Furthermore, salt fog can accelerate the corrosion of alloy friction film, leading to the damage of friction film. Meanwhile, the third body particles formed in salt fog condition participate in the braking process. The wear mechanisms in salt fog condition are dominated by abrasive and delamination wear.  相似文献   
9.
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号