首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90912篇
  免费   4159篇
  国内免费   4169篇
电工技术   4094篇
技术理论   6篇
综合类   8680篇
化学工业   13155篇
金属工艺   5650篇
机械仪表   3048篇
建筑科学   4469篇
矿业工程   1309篇
能源动力   2842篇
轻工业   5930篇
水利工程   1970篇
石油天然气   4148篇
武器工业   696篇
无线电   6780篇
一般工业技术   14212篇
冶金工业   2838篇
原子能技术   2192篇
自动化技术   17221篇
  2024年   63篇
  2023年   295篇
  2022年   412篇
  2021年   629篇
  2020年   1042篇
  2019年   972篇
  2018年   1082篇
  2017年   1017篇
  2016年   1557篇
  2015年   2191篇
  2014年   4026篇
  2013年   4768篇
  2012年   4072篇
  2011年   4752篇
  2010年   3974篇
  2009年   5370篇
  2008年   5358篇
  2007年   5719篇
  2006年   5279篇
  2005年   4408篇
  2004年   3809篇
  2003年   3710篇
  2002年   3765篇
  2001年   2816篇
  2000年   3177篇
  1999年   2960篇
  1998年   2499篇
  1997年   2372篇
  1996年   2532篇
  1995年   2673篇
  1994年   2427篇
  1993年   1472篇
  1992年   1497篇
  1991年   1032篇
  1990年   751篇
  1989年   670篇
  1988年   642篇
  1987年   375篇
  1986年   231篇
  1985年   374篇
  1984年   422篇
  1983年   435篇
  1982年   336篇
  1981年   406篇
  1980年   270篇
  1979年   115篇
  1978年   112篇
  1977年   70篇
  1975年   56篇
  1974年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
2.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
3.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
4.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   
5.
Weak acids inhibit the growth of probiotics, such as Saccharomyces boulardii. We explored the tolerance of S. boulardii to different weak acids. S. boulardii had better fermentation ability under lactic acid conditions compared with acetic and butyric acid conditions; however, the budding of S. boulardii was significantly stronger than that of Saccharomyces cerevisiae under acetic acid conditions. Although the surface structure of S. boulardii was destroyed, it produced more daughter cells. S. boulardii metabolites were also significantly different from S. cerevisiae under acidic stress. The growth of S. boulardii under weak acid conditions differed significantly from that of S. cerevisiae. S. boulardii-mediated fingerprints under weak acid conditions were identified as latent biomarkers, related to fructose and mannose metabolism, tricarboxylic acid cycle, and the glycolysis pathway. Identified biomarkers will aid in the genetic engineering of S. boulardii and other Saccharomyces strains for improved acid resistance and biomass yield.  相似文献   
6.
《Journal of dairy science》2022,105(5):4461-4473
The provision of pasture and outdoor access for dairy cattle differs around the globe. For example, in Ireland, New Zealand, and Australia, dairy farms are largely pasture based, whereas dairy farms in the United States and Canada are largely confinement based. There is a high level of public support for pasture and outdoor access for dairy cows, and the available evidence shows that dairy cattle are highly motivated to access pasture, especially at night. The decision as to whether to provide outdoor access is typically made by farmers, but little is known about dairy farmers' perspectives on this topic. We investigated perspectives of Western Canadian dairy farmers on outdoor access, as well as how they believe different stakeholders (i.e., the dairy industry, the dairy cows, and the general public) regard outdoor access for dairy cows. Data were collected via (1) 11 focus group discussions with a total of 50 Western Canadian dairy farmers, and (2) semi-structured individual interviews with an additional 6 dairy farmers of Hutterite colonies. Data were analyzed using template analysis. Although most participants in this study did not provide outdoor access on their farms, or only provided outdoor access to certain cow groups, participants generally mentioned that they enjoyed seeing cows on pasture or outdoors. However, participants shared that the Canadian supply management system (including processors) required a consistent flow of production, which was thought to be easier and more economically realized with indoor housing of lactating cows. Participants believed that pasture or outdoor access for dairy cows was desired by the public. Some participants believed that dairy cows prefer to spend time outside under favorable weather conditions, but others felt that cows preferred to stay indoors in modern, ventilated freestall barns. The results of this study describe the perspectives of dairy farmers regarding the views of dairy industry stakeholders as they relate to outdoor access, helping to inform conversations around the provision of outdoor access for dairy cattle.  相似文献   
7.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
8.
The aim of this work was to optimize the production of a new lipase by a halotolerant bacterial strain Halomonas sp. C2SS100, by means of the response-surface methodology (RSM). The process parameters having the most significant effect on lipase production were identified using the Plackett–Burman screening design-of-experiments. Then, Box–Behnken design was applied to optimize lipase activity and the quadratic regression model of the lipase production was built. Indeed, the lipase yield was increased, and the value obtained experimentally (39 ± 2 U/ml) was very close to the rate predicted by the model (40.3 U/ml). Likewise, optimization of parameters by RSM resulted in 2.78-fold increase in lipase activity. These findings provide the first report on lipase production and optimization by a halotolerant bacterial strain belonging to Halomonas genus. Afterward, the biochemical properties of the produced lipase were studied for apply in oil stains removal. The crude lipase showed a maximum activity at 60°C and at pH ranging from 7 to 10. It displayed an important stability at high temperature, pH, and NaCl. Interestingly, this bacterial lipase exhibited a prominent stability toward some commercial solid and liquid detergents after 30 min of incubation at 50°C. The capability of the crude lipase to eliminate stain was ascertained on polycotton fabric pieces stained with lubricating oil. Whether with the addition of hot water alone or of a commercially available detergent, lipase is able to considerably boost the elimination of oil stains. The actual findings highlight the capacity of Halomonas sp. lipase for energy-efficient biocatalytic application.  相似文献   
9.
10.
《Ceramics International》2021,47(21):29646-29652
In the present study, the fatigue behavior and damage evolution of SiC/SiC minicomposites at elevated temperatures in oxygen-free environment are investigated which are important for their application and are still unclear. The high-temperature fatigue test platform is developed and the fatigue stress-life curve and the stress-strain response are obtained. The test result shows that the life of the material at elevated temperature is shorter than that at room temperature under the same stress level. Moreover, the hysteresis loop width and the residual strain increase with the increasing of the cycles while the hysteresis modulus decreases during the fatigue cycling. The evolution process of matrix cracks is observed using the real-time remote detection system. It is found that matrix cracking is insensitive to the cyclic loading which is similar to room temperature and is due to that the degeneration of the interfacial shear stress reduces the area of high stress in matrix. The fiber/matrix interfacial shear stress under different cycles is determined based on the fatigue modulus of each hysteresis loop. The result shows a fatigue enhancement phenomenon for the interface which is not observed at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号