首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96772篇
  免费   4703篇
  国内免费   4396篇
电工技术   4359篇
技术理论   5篇
综合类   9196篇
化学工业   13817篇
金属工艺   5827篇
机械仪表   3370篇
建筑科学   5113篇
矿业工程   1664篇
能源动力   3270篇
轻工业   7150篇
水利工程   2231篇
石油天然气   4584篇
武器工业   728篇
无线电   6917篇
一般工业技术   14715篇
冶金工业   2868篇
原子能技术   2252篇
自动化技术   17805篇
  2024年   79篇
  2023年   361篇
  2022年   576篇
  2021年   838篇
  2020年   1259篇
  2019年   1166篇
  2018年   1264篇
  2017年   1236篇
  2016年   1814篇
  2015年   2429篇
  2014年   4407篇
  2013年   5205篇
  2012年   4527篇
  2011年   5269篇
  2010年   4314篇
  2009年   5651篇
  2008年   5668篇
  2007年   6063篇
  2006年   5528篇
  2005年   4696篇
  2004年   4024篇
  2003年   3918篇
  2002年   3924篇
  2001年   2933篇
  2000年   3298篇
  1999年   3048篇
  1998年   2581篇
  1997年   2422篇
  1996年   2575篇
  1995年   2701篇
  1994年   2467篇
  1993年   1505篇
  1992年   1524篇
  1991年   1049篇
  1990年   784篇
  1989年   683篇
  1988年   655篇
  1987年   383篇
  1986年   236篇
  1985年   378篇
  1984年   420篇
  1983年   434篇
  1982年   335篇
  1981年   410篇
  1980年   274篇
  1979年   117篇
  1978年   113篇
  1977年   70篇
  1976年   41篇
  1975年   55篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
2.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
3.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
4.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   
5.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
6.
Weak acids inhibit the growth of probiotics, such as Saccharomyces boulardii. We explored the tolerance of S. boulardii to different weak acids. S. boulardii had better fermentation ability under lactic acid conditions compared with acetic and butyric acid conditions; however, the budding of S. boulardii was significantly stronger than that of Saccharomyces cerevisiae under acetic acid conditions. Although the surface structure of S. boulardii was destroyed, it produced more daughter cells. S. boulardii metabolites were also significantly different from S. cerevisiae under acidic stress. The growth of S. boulardii under weak acid conditions differed significantly from that of S. cerevisiae. S. boulardii-mediated fingerprints under weak acid conditions were identified as latent biomarkers, related to fructose and mannose metabolism, tricarboxylic acid cycle, and the glycolysis pathway. Identified biomarkers will aid in the genetic engineering of S. boulardii and other Saccharomyces strains for improved acid resistance and biomass yield.  相似文献   
7.
A new, experimental method based on air flow rate rather than current is presented to optimize operating parameters for the stacks and systems of proton exchange membrane fuel cells (PEMFCs) for maximizing their net power. This approach is illustrated for a commercial 18 kW PEMFC module. The impact of contamination pressure drop across the cathode air filter is also investigated on the compressor behavior. It is further shown that a 4V reduction in the compressor voltage reduces its power consumption by 9.1%. Using the 3D graphs of the power-pressure-flow data, it is found that the stack pressure of 180 kPaa is superior to the higher tested pressures as it enhances the net power by 7.0 and 13.7% at different conditions. Application of the present study will lead to the development of PEMFCs with higher power output by optimizing stack pressure, stoichiometry and air flow to properly deliver the system design specifications.  相似文献   
8.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
9.
《Ceramics International》2022,48(3):3261-3273
C/C–SiC composites have enormous potential as a new generation of brake materials. It is worth studying the friction and wear behaviours of these materials in special environments to ensure the safe and effective braking of trains in practical applications. In this study, the braking behaviours and wear mechanisms of C/C–SiC mating with iron/copper-based PM in dry, wet and salt fog conditions are compared in detail. The results show that the coefficient of friction (COF) in the wet condition is reduced by 14.13% compared with that under the dry condition. The COF value of the first braking under salt fog condition is increased by 12.27% and 30.75% compared to the dry and wet conditions, respectively. Additionally, the tail warping phenomenon of the braking curve disappears in wet condition, which is attributed to the weak adhesion of friction interfaces and the lubrication of the water film. The main wear mechanisms of C/C–SiC mating with iron/copper-based PM under dry condition are adhesive, fatigue and oxidation wear. However, the dominant wear in wet condition is abrasive wear. The cooling and lubrication of water reduce the tendency of thermal stress, and weaken adhesive and fatigue wear. Furthermore, salt fog can accelerate the corrosion of alloy friction film, leading to the damage of friction film. Meanwhile, the third body particles formed in salt fog condition participate in the braking process. The wear mechanisms in salt fog condition are dominated by abrasive and delamination wear.  相似文献   
10.
The aim of this work was to optimize the production of a new lipase by a halotolerant bacterial strain Halomonas sp. C2SS100, by means of the response-surface methodology (RSM). The process parameters having the most significant effect on lipase production were identified using the Plackett–Burman screening design-of-experiments. Then, Box–Behnken design was applied to optimize lipase activity and the quadratic regression model of the lipase production was built. Indeed, the lipase yield was increased, and the value obtained experimentally (39 ± 2 U/ml) was very close to the rate predicted by the model (40.3 U/ml). Likewise, optimization of parameters by RSM resulted in 2.78-fold increase in lipase activity. These findings provide the first report on lipase production and optimization by a halotolerant bacterial strain belonging to Halomonas genus. Afterward, the biochemical properties of the produced lipase were studied for apply in oil stains removal. The crude lipase showed a maximum activity at 60°C and at pH ranging from 7 to 10. It displayed an important stability at high temperature, pH, and NaCl. Interestingly, this bacterial lipase exhibited a prominent stability toward some commercial solid and liquid detergents after 30 min of incubation at 50°C. The capability of the crude lipase to eliminate stain was ascertained on polycotton fabric pieces stained with lubricating oil. Whether with the addition of hot water alone or of a commercially available detergent, lipase is able to considerably boost the elimination of oil stains. The actual findings highlight the capacity of Halomonas sp. lipase for energy-efficient biocatalytic application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号