首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1862篇
  免费   199篇
  国内免费   217篇
电工技术   103篇
综合类   308篇
化学工业   37篇
金属工艺   47篇
机械仪表   69篇
建筑科学   56篇
矿业工程   5篇
能源动力   130篇
轻工业   39篇
水利工程   37篇
石油天然气   13篇
武器工业   13篇
无线电   179篇
一般工业技术   165篇
冶金工业   16篇
原子能技术   11篇
自动化技术   1050篇
  2024年   1篇
  2023年   22篇
  2022年   18篇
  2021年   34篇
  2020年   46篇
  2019年   76篇
  2018年   53篇
  2017年   75篇
  2016年   116篇
  2015年   77篇
  2014年   88篇
  2013年   216篇
  2012年   141篇
  2011年   171篇
  2010年   99篇
  2009年   128篇
  2008年   126篇
  2007年   129篇
  2006年   109篇
  2005年   73篇
  2004年   75篇
  2003年   73篇
  2002年   57篇
  2001年   51篇
  2000年   40篇
  1999年   24篇
  1998年   23篇
  1997年   15篇
  1996年   19篇
  1995年   19篇
  1994年   24篇
  1993年   5篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   3篇
  1974年   1篇
排序方式: 共有2278条查询结果,搜索用时 31 毫秒
1.
针对当前超声水表中相关法时间分辨率只能达到采样周期的问题,提出了一种基于相关法的低采样率超声水表时延估计方法.首先,研究了超声水表中所能达到的最大时间延迟;其次,讨论了相关法在超声水表当中的具体应用及插值算法对于提高流量测量精度的作用;最后,利用MATLAB软件对算法进行仿真评估了实际噪声条件下算法能达到的时延估计精度并搭建流量计量系统证明算法的有效性.仿真结果表明,在超声换能器频率为1 MHz、采样频率为4 MHz的情况下,时延估计的平均绝对误差在百皮秒内.表明该算法能在较低的采样频率下实现高精度的时延估计,在时延估计精度上比传统相关法更具有优越性.  相似文献   
2.
3.
This paper addresses the issue of reliable load frequency control design of an uncertain multi-area power system with constant time delays and disturbances via non-fragile sampled-data control approach. In particular, the parameter uncertainties are assumed to be randomly occurring which are described by the Bernoulli distributed sequences. By constructing a suitable Lyapunov–Krasovskii functional together with Wirtinger-based inequality, a new set of sufficient conditions in terms of linear matrix inequalities is obtained to ensure the asymptotic stability and extended dissipativity of the multi-area power system not only when all actuators are operational, but also in case of some actuator failures. Finally, simulation results are conducted to validate the effectiveness of the proposed control design technique.  相似文献   
4.
This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations. The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers. The annual electricity productions of power plants with novel receivers in Phoenix, Sevilla, and Tuotuohe are 8.5%, 10.5%, and 14.4% higher than those with traditional receivers at the outlet temperature of 550°C. The levelized cost of electricity of power plants with double-selective-coated receivers can be decreased by 6.9%, 8.5%, and 11.6%. In Phoenix, the optimal operating temperature of the power plants is improved from 500°C to 560°C by employing a novel receiver. Furthermore, the sensitivity analysis of the receiver heat loss, solar absorption, and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance. Solar absorption has a positive contribution to annual electricity productions, whereas heat loss and freeze protection temperature have a negative effect on electricity outputs. The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.  相似文献   
5.
The , and mixed dynamic output feedback control of Markov jump linear systems in a partial observation context is studied through an iterative approach. By partial information, we mean that neither the state variable x(k) nor the Markov chain θ(k) are available to the controller. Instead, we assume that the controller relies only on an output y(k) and a measured variable coming from a detector that provides the only information of the Markov chain θ(k). To solve the problem, we resort to an iterative method that starts with a state‐feedback controller and solves at each iteration a linear matrix inequality optimization problem. It is shown that this iterative algorithm yields to a nonincreasing sequence of upper bound costs so that it converges to a minimum value. The effectiveness of the iterative procedure is illustrated by means of two examples in which the conservatism between the upper bounds and actual costs is significantly reduced.  相似文献   
6.
The spin‐gapless semiconductors (SGSs) are a new class of zero‐gap materials which have fully spin polarized electrons and holes. They bridge the zero‐gap materials and the half‐metals. The band structures of the SGSs can have two types of energy dispersion: Dirac linear dispersion and parabolic dispersion. The Dirac‐type SGSs exhibit fully spin polarized Dirac cones, and offer a platform for massless and fully spin polarized spintronics as well as dissipationless edge states via the quantum anomalous Hall effect. With fascinating spin and charge states, they hold great potential for spintronics. There have been tremendous efforts worldwide to find suitable candidates for SGSs. In particular, there is an increasing interest in searching for Dirac type SGSs. In the past decade, a large number of Dirac or parabolic type SGSs have been predicted by density functional theory, and some parabolic SGSs have been experimentally demonstrated. The SGSs hold great potential for spintronics, electronics, and optoelectronics with high speed and low‐energy consumption. Here, both the Dirac and the parabolic types of SGSs in different material systems are reviewed and the concepts of the SGS, novel spin and charge states, and the potential applications of SGSs in next‐generation spintronic devices are outlined.  相似文献   
7.
This study presents a methodology to assess suitability of a site for small scale concentrated solar power (CSP) systems for its energy conversion efficiency and make‐up water requirement. Energy conversion efficiency of CSPs relies not only on the level of direct solar radiation but also on the performance of the cooling system. Regions with high solar potential have to deal with heat rejection at elevated temperatures which causes reduced energy conversion efficiencies due to high condenser temperatures. It is desirable to utilize wet cooling systems as they can achieve temperatures lower than the dry bulb temperature by evaporative cooling. On the other hand, such regions usually lack water resources which deteriorate the sustainable nature of CSP applications. This study combines various available models for both solar resource estimation and cooling systems' performance considering (i) the influence of ambient temperatures, and (ii) the influence of humidity levels. These models are integrated together to analyze the use of dry or wet cooling systems in terms of overall energy output and water consumption at a selected site in northern Cyprus. The model inputs consist of only annual hourly surface weather data and the location of the site of interest. The results show that dry cooling unit at northern Cyprus is capable of saving water about 18.7 ton/MWh while it produces 27% less energy compared to the wet cooling alternative for the representative annual weather data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Observer and optimal boundary control design for the objective of output tracking of a linear distributed parameter system given by a two‐dimensional (2‐D) parabolic partial differential equation with time‐varying domain is realized in this work. The transformation of boundary actuation to distributed control setting allows to represent the system's model in a standard evolutionary form. By exploring dynamical model evolution and generating data, a set of time‐varying empirical eigenfunctions that capture the dominant dynamics of the distributed system is found. This basis is used in Galerkin's method to accurately represent the distributed system as a finite‐dimensional plant in terms of a linear time‐varying system. This reduced‐order model enables synthesis of a linear optimal output tracking controller, as well as design of a state observer. Finally, numerical results are prepared for the optimal output tracking of a 2‐D model of the temperature distribution in Czochralski crystal growth process which has nontrivial geometry. © 2014 American Institute of Chemical Engineers AIChE J, 61: 494–502, 2015  相似文献   
9.
This paper focuses on the problem of fault-tolerant controller (FTC) design for uncertain networked control systems (NCSs) with random delays and actuator faults. A new fault model is proposed to represent more class of actuator faults. More precisely, the NCSs with random delays and the possible actuator faults are modeled as a Markovian jump system (MJS) with incomplete transition probabilities (TPs) and then LMI-based sufficient conditions are derived to ensure the stochastic stability of the closed-loop system. The sufficient conditions are constructed to synthesize the mode-dependent static-output feedback (SOF) control laws. Feasibility and reliability of the proposed FTC against actuator faults are indicated through simulation results.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号