首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100970篇
  免费   5443篇
  国内免费   4679篇
电工技术   5462篇
技术理论   5篇
综合类   9620篇
化学工业   13861篇
金属工艺   6305篇
机械仪表   3719篇
建筑科学   5597篇
矿业工程   1484篇
能源动力   4985篇
轻工业   6221篇
水利工程   2277篇
石油天然气   4594篇
武器工业   767篇
无线电   7300篇
一般工业技术   15670篇
冶金工业   2826篇
原子能技术   2532篇
自动化技术   17867篇
  2024年   80篇
  2023年   445篇
  2022年   759篇
  2021年   1089篇
  2020年   1467篇
  2019年   1366篇
  2018年   1454篇
  2017年   1447篇
  2016年   2042篇
  2015年   2641篇
  2014年   4707篇
  2013年   5492篇
  2012年   4767篇
  2011年   5660篇
  2010年   4557篇
  2009年   5952篇
  2008年   5878篇
  2007年   6317篇
  2006年   5781篇
  2005年   4867篇
  2004年   4194篇
  2003年   4046篇
  2002年   4047篇
  2001年   3041篇
  2000年   3343篇
  1999年   3127篇
  1998年   2607篇
  1997年   2464篇
  1996年   2605篇
  1995年   2736篇
  1994年   2470篇
  1993年   1511篇
  1992年   1534篇
  1991年   1059篇
  1990年   780篇
  1989年   691篇
  1988年   652篇
  1987年   389篇
  1986年   237篇
  1985年   382篇
  1984年   429篇
  1983年   435篇
  1982年   339篇
  1981年   407篇
  1980年   276篇
  1979年   120篇
  1978年   113篇
  1977年   69篇
  1976年   41篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   
2.
Lithium iron phosphate battery (LIPB) is the key equipment of battery energy storage system (BESS), which plays a major role in promoting the economic and stable operation of microgrid. Based on the advancement of LIPB technology and efficient consumption of renewable energy, two power supply planning strategies and the china certified emission reduction (CCER) model are proposed respectively. Based on it, the multi-objective planning optimization model with economic benefits, environmental benefits and power supply stability as the objective function is established for the first time, and the Newton Weighted Sum Frisch method (NWSFA) solution model is adopted. In the planning process, rain flow counting method is used to research the life of BESS, which improves the accuracy of energy storage annual cost calculation. A park in northern China is taken as a case study to demonstrate the application of this model. The simulation results show that the annual economic operating cost of BESS is decreased by 18.81%, the energy supply reliability is increased by 0.15%, and the optimal electricity price adjustment ratio of the system is 15%.  相似文献   
3.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
4.
5.
HFC-134a is a widely used environment-friendly refrigerant. At present, China is the largest producer of HFC-134a in the world. The production of HFC-134a in China mainly adopts the calcium carbide acetylene route. However, the production route has high resource and energy consumption and large waste emission, and few of the studies addressed on the environmental performance of its production process. This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment (LCA) using the CML 2001 method. And uncertainty analysis by Monte-Carlo simulation was also carried out. The results showed that electricity had the most impact on the environment, followed by steam, hydrogen fluoride and chlorine, and the impact of direct CO2 emissions in calcium carbide production stage on the global warming effect also could not be ignored. Therefore, the clean energy (e.g., wind, solar, biomass, and natural gas) was used to replace coal-based electricity and coal-fired steam in this study, showing considerable environmental benefits. At the same time, the use of advanced production technologies could also improve environmental benefits, and the environmental impact of the global warming category could be reduced by 4.1% via using CO2 capture and purification technology. The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars. For the production of HFC-134a, this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits.  相似文献   
6.
《Ceramics International》2022,48(3):3544-3553
In this study the effects of thermal shock on the impact damage resistance, damage tolerance and flexural strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates with balanced and symmetric layup were gradually heated to 1200°C in an air-based furnace and held for at least 30 min before being removed and immersed in water at room temperature. The laminates were then subjected to low velocity impacts via a hemispherical steel impactor. The resultant damage was characterized non-destructively, following which the laminates were subjected to compression tests. Three-point bend tests were also performed to evaluate the effect of thermal shock on the flexural strength and related failure modes of the laminates. Thermally shocked laminates showed smaller internal damage and larger external damage areas in comparison to their pristine counterparts. For the impact energy and resultant damage size considered, the residual compressive strengths for the thermally shocked and pristine laminates were similar.  相似文献   
7.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
8.
Both fluorescent and luminescent observation are widely used to examine real-time gene expression patterns in living organisms. Several fluuorescent and luminescent proteins with specific optical properties have been developed and applied for simultaneous, multi-color observation of more than two gene expression profiles. Compared to fluorescent proteins, however, the application of multi-color luminescent imaging in living organisms is still limited. In this study, we introduced two-color luciferases into the soil nematode C. elegans and performed simultaneous analysis of two gene expression profiles. Using a green-emitting luciferase Eluc (emerald luciferase) and red-emitting luciferase SLR (stable luciferase red), the expression patterns of two genes were simultaneously observed in single animals from embryonic to adult stages over its whole life span. In addition, dual gene activities were observed at the single embryo level, with the simultaneous observation of morphological changes. These are the first application of a two-color luciferase system into a whole animal and suggest that precise relationship of expression patterns of multiple genes of interest can be analyzed over the whole life of the animal, dependent on the changes in genetic and/or environmental conditions.  相似文献   
9.
10.
Infections due to Gram-negative bacteria Helicobacter pylori may result in humans having gastritis, gastric or duodenal ulcer, and even gastric cancer. Investigation of quantitative changes of soluble biomarkers, correlating with H. pylori infection, is a promising tool for monitoring the course of infection and inflammatory response. The aim of this study was to determine, using an experimental model of H. pylori infection in guinea pigs, the specific characteristics of infrared spectra (IR) of sera from H. pylori infected (40) vs. uninfected (20) guinea pigs. The H. pylori status was confirmed by histological, molecular, and serological examination. The IR spectra were measured using a Fourier-transform (FT)-IR spectrometer Spectrum 400 (PerkinElmer) within the range of wavenumbers 3000–750 cm−1 and converted to first derivative spectra. Ten wavenumbers correlated with H. pylori infection, based on the chi-square test, were selected for a K-nearest neighbors (k-NN) algorithm. The wavenumbers correlating with infection were identified in the W2 and W3 windows associated mainly with proteins and in the W4 window related to nucleic acids and hydrocarbons. The k-NN for detection of H. pylori infection has been developed based on chemometric data. Using this model, animals were classified as infected with H. pylori with 100% specificity and 97% sensitivity. To summarize, the IR spectroscopy and k-NN algorithm are useful for monitoring experimental H. pylori infection and related inflammatory response in guinea pig model and may be considered for application in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号