首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104520篇
  免费   5671篇
  国内免费   4957篇
电工技术   4408篇
技术理论   6篇
综合类   10184篇
化学工业   13993篇
金属工艺   6211篇
机械仪表   4104篇
建筑科学   8521篇
矿业工程   1892篇
能源动力   3118篇
轻工业   6954篇
水利工程   2588篇
石油天然气   5521篇
武器工业   844篇
无线电   7277篇
一般工业技术   15727篇
冶金工业   3326篇
原子能技术   2271篇
自动化技术   18203篇
  2024年   99篇
  2023年   592篇
  2022年   894篇
  2021年   1158篇
  2020年   1639篇
  2019年   1416篇
  2018年   1367篇
  2017年   1435篇
  2016年   1922篇
  2015年   2633篇
  2014年   4737篇
  2013年   5594篇
  2012年   5113篇
  2011年   5789篇
  2010年   4796篇
  2009年   6077篇
  2008年   6053篇
  2007年   6723篇
  2006年   6079篇
  2005年   5080篇
  2004年   4449篇
  2003年   4221篇
  2002年   4097篇
  2001年   3228篇
  2000年   3522篇
  1999年   3207篇
  1998年   2697篇
  1997年   2571篇
  1996年   2682篇
  1995年   2799篇
  1994年   2513篇
  1993年   1567篇
  1992年   1576篇
  1991年   1080篇
  1990年   807篇
  1989年   732篇
  1988年   664篇
  1987年   405篇
  1986年   243篇
  1985年   401篇
  1984年   438篇
  1983年   453篇
  1982年   344篇
  1981年   411篇
  1980年   288篇
  1979年   119篇
  1978年   113篇
  1977年   74篇
  1976年   41篇
  1975年   58篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
崔荣荣 《包装工程》2022,43(6):11-23
目的 了解近年来传统纺织服饰图案的研究动态及发展趋势,归纳学术研究成果并进行评价,总结研究传统服饰图案的意义和对现代设计的启示。方法 基于史论视角、社会文化视角、工艺美术视角和设计艺术视角梳理相关文献,结合现有研究分析中国传统服饰图案的资料来源及其特色、传统服饰图案的研究热点、新时代传统服饰图案的生存策略及中国传统服饰图案创新设计的应用领域。结果指出传统服饰图案的研究史料取材丰富、研究类型呈现多元;当前传统服饰图案的传承与创新体现了数字化发展、美育引导、政策支持的特点;传统服饰图案在服装设计、公共空间、文创产品中大放异彩。结论 中国传统纺织服饰图案研究多点开花,但缺乏系统整体的“中国传统纺织服饰图案知识谱系”用于指导相关研究和实践,对中国传统纺织服饰图案的研究多处于实证分析的层面且欠缺深入独到的理论,通过综述与价值阐述,提出研究的不足之处,纵深学术研究,同时为中国传统纺织服饰图案的现代设计提供新思路。  相似文献   
2.
In this study, sea bream, sea bass, anchovy and trout were captured and recorded using a digital camera during refrigerated storage for 7 days. In addition, their total viable counts (TVC) were determined on a daily basis. Based on the TVC, each fish was classified as ‘fresh’ when it was <5 log cfu per g, and as ‘not fresh’ when it was >7 log cfu per g. They were uploaded on a web-based machine learning software called Teachable Machine (TM), which was trained about the pupils and heads of the fish. In addition, images of each species from different angles were uploaded to the software in order to ensure the recognition of fish species by TM. The data of the study indicated that the TM was able to distinguish fish species with high accuracy rates and achieved over 86% success in estimating the freshness of the fish species tested.  相似文献   
3.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
4.
Beginning in 2013, sites at the 128-m bottom depth contour were added to the sampling design of the annual Lake Michigan bottom trawl survey for prey fish, which has been conducted by the U.S. Geological Survey Great Lakes Science Center (GLSC) each fall since 1973, to better assess fish depth distributions in a changing ecosystem. The standard sampling design included bottom depths from 9 to 110 m, although the GLSC also sporadically conducted bottom trawl tows at the 128-m bottom depth contour during 1973–1988. Enactment of this new sampling design in 2013 revealed that mean biomass density of deepwater sculpins (Myoxocephalus thompsonii) at the 128-m depth exceeded the sum of mean biomass densities at shallower depths, indicating that the bulk of the deepwater sculpin population is residing in waters deeper than 110 m. Thus, our findings supported the hypothesis that the depth distribution of the deepwater sculpin population had shifted to deeper waters beginning in 2007, thereby explaining, at least in part, the marked decline in deepwater sculpin abundance since 2006 based on the standard sampling design. In contrast, our results did not support the hypothesis that the slimy sculpin (Cottus cognatus) population had shifted to deeper waters sometime after 2000. A portion of the burbot (Lota lota) population may have also shifted in depth distribution to waters deeper than 110 m after 2007, based on our results. Our findings have served as an impetus to further expand the range of depths sampled in our bottom trawl survey.  相似文献   
5.
6.
针对一种煤矿用本安型缺水传感器在现场安装及维护难度大,以及抽采泵供水状态下管道内有水但传感器检测显示为无水,或抽采泵停止工作时传感器检测显示有水问题,分析原产品中磁体及探头感应装置结构。改进其结构形式,并优化安装,使检测稳定可靠。实现抽采泵管道用缺水传感器的可靠性设计和轻量化设计。  相似文献   
7.
In any work system design intervention—for example, a physical workplace re-design, a work process change, or an equipment upgrade—it is often emphasized how important it is to involve stakeholders in the process of analysis and design, to gain their perspectives as input to the development, and ensure their future acceptance of the solution. While the users of an artifact or workplace are most often regarded as being the most important stakeholders in a design intervention, in a work-system context there may be additional influential stakeholders who influence and negotiate the design intervention's outcomes, resource allocation, requirements, and implementation. Literature shows that it is uncommon for empirical ergonomics and human factors (EHF) research to apply and report the use of any structured stakeholder identification method at all, leading to ad-hoc selections of whom to consider important. Conversely, other research fields offer a plethora of stakeholder identification and analysis methods, few of which seem to have been adopted in the EHF context. This article presents the development of a structured method for identification, classification, and qualitative analysis of stakeholders in EHF-related work system design intervention. It describes the method's EHF-related theoretical underpinnings, lessons learned from four use cases, and the incremental development of the method that has resulted in the current method procedure and visualization aids. The method, called Change Agent Infrastructure (abbreviated CHAI), has a mainly macroergonomic purpose, set on increasing the understanding of sociotechnical interactions that create the conditions for work system design intervention, and facilitating participative efforts.  相似文献   
8.
《Ceramics International》2022,48(3):3544-3553
In this study the effects of thermal shock on the impact damage resistance, damage tolerance and flexural strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates with balanced and symmetric layup were gradually heated to 1200°C in an air-based furnace and held for at least 30 min before being removed and immersed in water at room temperature. The laminates were then subjected to low velocity impacts via a hemispherical steel impactor. The resultant damage was characterized non-destructively, following which the laminates were subjected to compression tests. Three-point bend tests were also performed to evaluate the effect of thermal shock on the flexural strength and related failure modes of the laminates. Thermally shocked laminates showed smaller internal damage and larger external damage areas in comparison to their pristine counterparts. For the impact energy and resultant damage size considered, the residual compressive strengths for the thermally shocked and pristine laminates were similar.  相似文献   
9.
Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.  相似文献   
10.
An acoustic emission (AE) experiment was carried out to explore the AE location accuracy influenced by temperature. A hollow hemispherical specimen was used to simulate common underground structures. In the process of heating with the flame, the pulse signal of constant frequency was stimulated as an AE source. Then AE signals received by each sensor were collected and used for comparing localization accuracy at different temperatures. Results show that location errors of AE keep the same phenomenon in the early and middle heating stages. In the later stage of heating, location errors of AE increase sharply due to the appearance of cracks. This provides some beneficial suggestions on decreasing location errors of structural cracks caused by temperature and improves the ability of underground structure disaster prevention and control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号