首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121174篇
  免费   11622篇
  国内免费   7400篇
电工技术   6028篇
技术理论   12篇
综合类   14469篇
化学工业   14649篇
金属工艺   7166篇
机械仪表   7482篇
建筑科学   21882篇
矿业工程   4623篇
能源动力   3458篇
轻工业   5174篇
水利工程   3321篇
石油天然气   5096篇
武器工业   1453篇
无线电   8353篇
一般工业技术   13528篇
冶金工业   5494篇
原子能技术   845篇
自动化技术   17163篇
  2024年   221篇
  2023年   1705篇
  2022年   2848篇
  2021年   3463篇
  2020年   3587篇
  2019年   3024篇
  2018年   2958篇
  2017年   3608篇
  2016年   3854篇
  2015年   4123篇
  2014年   7300篇
  2013年   6913篇
  2012年   8178篇
  2011年   9190篇
  2010年   7194篇
  2009年   7726篇
  2008年   7274篇
  2007年   8342篇
  2006年   7677篇
  2005年   6671篇
  2004年   5456篇
  2003年   4823篇
  2002年   4112篇
  2001年   3381篇
  2000年   2844篇
  1999年   2405篇
  1998年   1857篇
  1997年   1605篇
  1996年   1262篇
  1995年   1162篇
  1994年   1047篇
  1993年   748篇
  1992年   686篇
  1991年   523篇
  1990年   427篇
  1989年   354篇
  1988年   277篇
  1987年   142篇
  1986年   146篇
  1985年   136篇
  1984年   119篇
  1983年   101篇
  1982年   116篇
  1981年   62篇
  1980年   93篇
  1979年   45篇
  1978年   40篇
  1977年   31篇
  1964年   31篇
  1955年   42篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
2.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
3.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
4.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
5.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
6.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
7.
《Ceramics International》2021,47(22):31886-31893
In this contribution, SnFe2O4 nanoparticles were prepared by the solvothermal method, the structural properties were performed using X-Ray Diffraction (DRX) to prove the success of tin ferrite formation and to determine de crystals parameters. The size and morphological study were build using Scanning Electron Microscopy (SEM) and Transmission Electron microscopy (TEM), the results showed that the size of particles is uniform with a range of particles (5–7 nm). The magnetic properties were carried out using the SQUID device, the SnFe2O4 nanoparticles have a magnetic transition at 750 K. In addition, the hysteresis loops at low temperature displayed Ms and Mr equals to 23 emu/g and 6 emu/g, respectively. The magnetoresistance properties were investigated, the SnFe2O4 nanoparticles present a large magnetoresistance effect (80%). The experimental results are supplemented by model calculations utilizing density functional theory and Monte-Carlo simulations.  相似文献   
8.
The main scope of this comprehensive study is to investigate the effects of poly(p-benzophenoneoxycarbonylphenyl acrylate), poly(BPOCPA), which presenting as only graft units or both graft and ungrafted units in the matrix, on the fundamental features of isotactic polypropylene (IPP). The graft copolymerization of BPOCPA onto IPP was performed with the aid of bulk melt polymerization at varying monomer content levels ranging from 5% to 40%. The thermal behavior, crystal quality, mechanical performance, and surface morphology of the samples were investigated by means of differential scanning calorimeter, X-ray diffractometer (XRD), universal mechanical test, and scanning electron microscope (SEM) techniques. Thermal analyses depicted that there existed the noteworthy enhancements in both crystalline melting temperatures and percent crystallinities of matrix polymers. Furthermore, according to XRD results, a and b parameters increased significantly at low percentages of the graft units, while the parameter c decreased in all products in consistence with the content. As for the mechanical characterization, the grafting led to remarkable improvements in modulus, tensile and impact strength of the products. SEM micrographs indicated that the samples were completely homogeneous without any phase separation and the products exhibited brittle nature with some ductility.  相似文献   
9.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
10.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号